Author: Trevor Hastie
Publisher: Springer Science & Business Media
ISBN: 0387216065
Category : Mathematics
Languages : en
Pages : 545
Book Description
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.
The Elements of Statistical Learning
Author: Trevor Hastie
Publisher: Springer Science & Business Media
ISBN: 0387216065
Category : Mathematics
Languages : en
Pages : 545
Book Description
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.
Publisher: Springer Science & Business Media
ISBN: 0387216065
Category : Mathematics
Languages : en
Pages : 545
Book Description
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.
Introduction to Mathematical Thinking
Author: Keith J. Devlin
Publisher:
ISBN: 9780615653631
Category : Mathematics
Languages : en
Pages : 0
Book Description
"Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.
Publisher:
ISBN: 9780615653631
Category : Mathematics
Languages : en
Pages : 0
Book Description
"Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.
Superconcentration and Related Topics
Author: Sourav Chatterjee
Publisher: Springer Science & Business Media
ISBN: 3319038869
Category : Mathematics
Languages : en
Pages : 156
Book Description
A certain curious feature of random objects, introduced by the author as “super concentration,” and two related topics, “chaos” and “multiple valleys,” are highlighted in this book. Although super concentration has established itself as a recognized feature in a number of areas of probability theory in the last twenty years (under a variety of names), the author was the first to discover and explore its connections with chaos and multiple valleys. He achieves a substantial degree of simplification and clarity in the presentation of these findings by using the spectral approach. Understanding the fluctuations of random objects is one of the major goals of probability theory and a whole subfield of probability and analysis, called concentration of measure, is devoted to understanding these fluctuations. This subfield offers a range of tools for computing upper bounds on the orders of fluctuations of very complicated random variables. Usually, concentration of measure is useful when more direct problem-specific approaches fail; as a result, it has massively gained acceptance over the last forty years. And yet, there is a large class of problems in which classical concentration of measure produces suboptimal bounds on the order of fluctuations. Here lies the substantial contribution of this book, which developed from a set of six lectures the author first held at the Cornell Probability Summer School in July 2012. The book is interspersed with a sizable number of open problems for professional mathematicians as well as exercises for graduate students working in the fields of probability theory and mathematical physics. The material is accessible to anyone who has attended a graduate course in probability.
Publisher: Springer Science & Business Media
ISBN: 3319038869
Category : Mathematics
Languages : en
Pages : 156
Book Description
A certain curious feature of random objects, introduced by the author as “super concentration,” and two related topics, “chaos” and “multiple valleys,” are highlighted in this book. Although super concentration has established itself as a recognized feature in a number of areas of probability theory in the last twenty years (under a variety of names), the author was the first to discover and explore its connections with chaos and multiple valleys. He achieves a substantial degree of simplification and clarity in the presentation of these findings by using the spectral approach. Understanding the fluctuations of random objects is one of the major goals of probability theory and a whole subfield of probability and analysis, called concentration of measure, is devoted to understanding these fluctuations. This subfield offers a range of tools for computing upper bounds on the orders of fluctuations of very complicated random variables. Usually, concentration of measure is useful when more direct problem-specific approaches fail; as a result, it has massively gained acceptance over the last forty years. And yet, there is a large class of problems in which classical concentration of measure produces suboptimal bounds on the order of fluctuations. Here lies the substantial contribution of this book, which developed from a set of six lectures the author first held at the Cornell Probability Summer School in July 2012. The book is interspersed with a sizable number of open problems for professional mathematicians as well as exercises for graduate students working in the fields of probability theory and mathematical physics. The material is accessible to anyone who has attended a graduate course in probability.
Mathematics Framework for California Public Schools
Author: California. Curriculum Development and Supplemental Materials Commission
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 356
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 356
Book Description
Modern Statistics for Modern Biology
Author: SUSAN. HUBER HOLMES (WOLFGANG.)
Publisher: Cambridge University Press
ISBN: 1108427022
Category : Biometry
Languages : en
Pages : 407
Book Description
Publisher: Cambridge University Press
ISBN: 1108427022
Category : Biometry
Languages : en
Pages : 407
Book Description
The Basic George B. Dantzig
Author: George Bernard Dantzig
Publisher: Stanford University Press
ISBN: 9780804748346
Category : Business & Economics
Languages : en
Pages : 412
Book Description
The late George B. Dantzig , widely known as the father of linear programming, was a major influence in mathematics, operations research, and economics. As Professor Emeritus at Stanford University, he continued his decades of research on linear programming and related subjects. Dantzig was awarded eight honorary doctorates, the National Medal of Science, and the John von Neumann Theory Prize from the Institute for Operations Research and the Management Sciences. The 24 chapters of this volume highlight the amazing breadth and enduring influence of Dantzig's research. Short, non-technical summaries at the opening of each major section introduce a specific research area and discuss the current significance of Dantzig's work in that field. Among the topics covered are mathematical statistics, the Simplex Method of linear programming, economic modeling, network optimization, and nonlinear programming. The book also includes a complete bibliography of Dantzig's writings.
Publisher: Stanford University Press
ISBN: 9780804748346
Category : Business & Economics
Languages : en
Pages : 412
Book Description
The late George B. Dantzig , widely known as the father of linear programming, was a major influence in mathematics, operations research, and economics. As Professor Emeritus at Stanford University, he continued his decades of research on linear programming and related subjects. Dantzig was awarded eight honorary doctorates, the National Medal of Science, and the John von Neumann Theory Prize from the Institute for Operations Research and the Management Sciences. The 24 chapters of this volume highlight the amazing breadth and enduring influence of Dantzig's research. Short, non-technical summaries at the opening of each major section introduce a specific research area and discuss the current significance of Dantzig's work in that field. Among the topics covered are mathematical statistics, the Simplex Method of linear programming, economic modeling, network optimization, and nonlinear programming. The book also includes a complete bibliography of Dantzig's writings.
An Introduction to Statistical Signal Processing
Author: Robert M. Gray
Publisher: Cambridge University Press
ISBN: 1139456288
Category : Technology & Engineering
Languages : en
Pages : 479
Book Description
This book describes the essential tools and techniques of statistical signal processing. At every stage theoretical ideas are linked to specific applications in communications and signal processing using a range of carefully chosen examples. The book begins with a development of basic probability, random objects, expectation, and second order moment theory followed by a wide variety of examples of the most popular random process models and their basic uses and properties. Specific applications to the analysis of random signals and systems for communicating, estimating, detecting, modulating, and other processing of signals are interspersed throughout the book. Hundreds of homework problems are included and the book is ideal for graduate students of electrical engineering and applied mathematics. It is also a useful reference for researchers in signal processing and communications.
Publisher: Cambridge University Press
ISBN: 1139456288
Category : Technology & Engineering
Languages : en
Pages : 479
Book Description
This book describes the essential tools and techniques of statistical signal processing. At every stage theoretical ideas are linked to specific applications in communications and signal processing using a range of carefully chosen examples. The book begins with a development of basic probability, random objects, expectation, and second order moment theory followed by a wide variety of examples of the most popular random process models and their basic uses and properties. Specific applications to the analysis of random signals and systems for communicating, estimating, detecting, modulating, and other processing of signals are interspersed throughout the book. Hundreds of homework problems are included and the book is ideal for graduate students of electrical engineering and applied mathematics. It is also a useful reference for researchers in signal processing and communications.
Stat Labs
Author: Deborah Nolan
Publisher: Springer Science & Business Media
ISBN: 0387227431
Category : Mathematics
Languages : en
Pages : 292
Book Description
Integrating the theory and practice of statistics through a series of case studies, each lab introduces a problem, provides some scientific background, suggests investigations for the data, and provides a summary of the theory used in each case. Aimed at upper-division students.
Publisher: Springer Science & Business Media
ISBN: 0387227431
Category : Mathematics
Languages : en
Pages : 292
Book Description
Integrating the theory and practice of statistics through a series of case studies, each lab introduces a problem, provides some scientific background, suggests investigations for the data, and provides a summary of the theory used in each case. Aimed at upper-division students.
U.S. Government Research Reports
Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 426
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 426
Book Description
Dictionary Catalog of the Research Libraries of the New York Public Library, 1911-1971
Author: New York Public Library. Research Libraries
Publisher:
ISBN:
Category : Library catalogs
Languages : en
Pages : 600
Book Description
Publisher:
ISBN:
Category : Library catalogs
Languages : en
Pages : 600
Book Description