Stable Non-Gaussian Self-Similar Processes with Stationary Increments

Stable Non-Gaussian Self-Similar Processes with Stationary Increments PDF Author: Vladas Pipiras
Publisher: Springer
ISBN: 3319623311
Category : Mathematics
Languages : en
Pages : 143

Get Book Here

Book Description
This book provides a self-contained presentation on the structure of a large class of stable processes, known as self-similar mixed moving averages. The authors present a way to describe and classify these processes by relating them to so-called deterministic flows. The first sections in the book review random variables, stochastic processes, and integrals, moving on to rigidity and flows, and finally ending with mixed moving averages and self-similarity. In-depth appendices are also included. This book is aimed at graduate students and researchers working in probability theory and statistics.

Stable Non-Gaussian Self-Similar Processes with Stationary Increments

Stable Non-Gaussian Self-Similar Processes with Stationary Increments PDF Author: Vladas Pipiras
Publisher: Springer
ISBN: 3319623311
Category : Mathematics
Languages : en
Pages : 143

Get Book Here

Book Description
This book provides a self-contained presentation on the structure of a large class of stable processes, known as self-similar mixed moving averages. The authors present a way to describe and classify these processes by relating them to so-called deterministic flows. The first sections in the book review random variables, stochastic processes, and integrals, moving on to rigidity and flows, and finally ending with mixed moving averages and self-similarity. In-depth appendices are also included. This book is aimed at graduate students and researchers working in probability theory and statistics.

Stable Non-Gaussian Random Processes

Stable Non-Gaussian Random Processes PDF Author: Gennady Samoradnitsky
Publisher: Routledge
ISBN: 1351414798
Category : Mathematics
Languages : en
Pages : 662

Get Book Here

Book Description
This book serves as a standard reference, making this area accessible not only to researchers in probability and statistics, but also to graduate students and practitioners. The book assumes only a first-year graduate course in probability. Each chapter begins with a brief overview and concludes with a wide range of exercises at varying levels of difficulty. The authors supply detailed hints for the more challenging problems, and cover many advances made in recent years.

Selfsimilar Processes

Selfsimilar Processes PDF Author: Paul Embrechts
Publisher: Princeton University Press
ISBN: 1400825105
Category : Mathematics
Languages : en
Pages : 125

Get Book Here

Book Description
The modeling of stochastic dependence is fundamental for understanding random systems evolving in time. When measured through linear correlation, many of these systems exhibit a slow correlation decay--a phenomenon often referred to as long-memory or long-range dependence. An example of this is the absolute returns of equity data in finance. Selfsimilar stochastic processes (particularly fractional Brownian motion) have long been postulated as a means to model this behavior, and the concept of selfsimilarity for a stochastic process is now proving to be extraordinarily useful. Selfsimilarity translates into the equality in distribution between the process under a linear time change and the same process properly scaled in space, a simple scaling property that yields a remarkably rich theory with far-flung applications. After a short historical overview, this book describes the current state of knowledge about selfsimilar processes and their applications. Concepts, definitions and basic properties are emphasized, giving the reader a road map of the realm of selfsimilarity that allows for further exploration. Such topics as noncentral limit theory, long-range dependence, and operator selfsimilarity are covered alongside statistical estimation, simulation, sample path properties, and stochastic differential equations driven by selfsimilar processes. Numerous references point the reader to current applications. Though the text uses the mathematical language of the theory of stochastic processes, researchers and end-users from such diverse fields as mathematics, physics, biology, telecommunications, finance, econometrics, and environmental science will find it an ideal entry point for studying the already extensive theory and applications of selfsimilarity.

The Mathematics of Financial Modeling and Investment Management

The Mathematics of Financial Modeling and Investment Management PDF Author: Sergio M. Focardi
Publisher: John Wiley & Sons
ISBN: 0471674230
Category : Business & Economics
Languages : en
Pages : 802

Get Book Here

Book Description
the mathematics of financial modeling & investment management The Mathematics of Financial Modeling & Investment Management covers a wide range of technical topics in mathematics and finance-enabling the investment management practitioner, researcher, or student to fully understand the process of financial decision-making and its economic foundations. This comprehensive resource will introduce you to key mathematical techniques-matrix algebra, calculus, ordinary differential equations, probability theory, stochastic calculus, time series analysis, optimization-as well as show you how these techniques are successfully implemented in the world of modern finance. Special emphasis is placed on the new mathematical tools that allow a deeper understanding of financial econometrics and financial economics. Recent advances in financial econometrics, such as tools for estimating and representing the tails of the distributions, the analysis of correlation phenomena, and dimensionality reduction through factor analysis and cointegration are discussed in depth. Using a wealth of real-world examples, Focardi and Fabozzi simultaneously show both the mathematical techniques and the areas in finance where these techniques are applied. They also cover a variety of useful financial applications, such as: * Arbitrage pricing * Interest rate modeling * Derivative pricing * Credit risk modeling * Equity and bond portfolio management * Risk management * And much more Filled with in-depth insight and expert advice, The Mathematics of Financial Modeling & Investment Management clearly ties together financial theory and mathematical techniques.

Stable Non-Gaussian Random Processes

Stable Non-Gaussian Random Processes PDF Author: Gennady Samoradnitsky
Publisher: Routledge
ISBN: 1351414801
Category : Mathematics
Languages : en
Pages : 655

Get Book Here

Book Description
This book serves as a standard reference, making this area accessible not only to researchers in probability and statistics, but also to graduate students and practitioners. The book assumes only a first-year graduate course in probability. Each chapter begins with a brief overview and concludes with a wide range of exercises at varying levels of difficulty. The authors supply detailed hints for the more challenging problems, and cover many advances made in recent years.

Long-Range Dependence and Self-Similarity

Long-Range Dependence and Self-Similarity PDF Author: Vladas Pipiras
Publisher: Cambridge University Press
ISBN: 1107039460
Category : Business & Economics
Languages : en
Pages : 693

Get Book Here

Book Description
A modern and rigorous introduction to long-range dependence and self-similarity, complemented by numerous more specialized up-to-date topics in this research area.

Fractional Calculus and Fractional Processes with Applications to Financial Economics

Fractional Calculus and Fractional Processes with Applications to Financial Economics PDF Author: Hasan Fallahgoul
Publisher: Academic Press
ISBN: 0128042842
Category : Mathematics
Languages : en
Pages : 120

Get Book Here

Book Description
Fractional Calculus and Fractional Processes with Applications to Financial Economics presents the theory and application of fractional calculus and fractional processes to financial data. Fractional calculus dates back to 1695 when Gottfried Wilhelm Leibniz first suggested the possibility of fractional derivatives. Research on fractional calculus started in full earnest in the second half of the twentieth century. The fractional paradigm applies not only to calculus, but also to stochastic processes, used in many applications in financial economics such as modelling volatility, interest rates, and modelling high-frequency data. The key features of fractional processes that make them interesting are long-range memory, path-dependence, non-Markovian properties, self-similarity, fractal paths, and anomalous diffusion behaviour. In this book, the authors discuss how fractional calculus and fractional processes are used in financial modelling and finance economic theory. It provides a practical guide that can be useful for students, researchers, and quantitative asset and risk managers interested in applying fractional calculus and fractional processes to asset pricing, financial time-series analysis, stochastic volatility modelling, and portfolio optimization. - Provides the necessary background for the book's content as applied to financial economics - Analyzes the application of fractional calculus and fractional processes from deterministic and stochastic perspectives

Stochastic Processes: Modeling and Simulation

Stochastic Processes: Modeling and Simulation PDF Author: D N Shanbhag
Publisher: Gulf Professional Publishing
ISBN: 9780444500137
Category : Computers
Languages : en
Pages : 1028

Get Book Here

Book Description
This sequel to volume 19 of Handbook on Statistics on Stochastic Processes: Modelling and Simulation is concerned mainly with the theme of reviewing and, in some cases, unifying with new ideas the different lines of research and developments in stochastic processes of applied flavour. This volume consists of 23 chapters addressing various topics in stochastic processes. These include, among others, those on manufacturing systems, random graphs, reliability, epidemic modelling, self-similar processes, empirical processes, time series models, extreme value therapy, applications of Markov chains, modelling with Monte Carlo techniques, and stochastic processes in subjects such as engineering, telecommunications, biology, astronomy and chemistry. particular with modelling, simulation techniques and numerical methods concerned with stochastic processes. The scope of the project involving this volume as well as volume 19 is already clarified in the preface of volume 19. The present volume completes the aim of the project and should serve as an aid to students, teachers, researchers and practitioners interested in applied stochastic processes.

Stochastic Differential Equations and Processes

Stochastic Differential Equations and Processes PDF Author: Mounir Zili
Publisher: Springer Science & Business Media
ISBN: 3642223680
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
Selected papers submitted by participants of the international Conference “Stochastic Analysis and Applied Probability 2010” ( www.saap2010.org ) make up the basis of this volume. The SAAP 2010 was held in Tunisia, from 7-9 October, 2010, and was organized by the “Applied Mathematics & Mathematical Physics” research unit of the preparatory institute to the military academies of Sousse (Tunisia), chaired by Mounir Zili. The papers cover theoretical, numerical and applied aspects of stochastic processes and stochastic differential equations. The study of such topic is motivated in part by the need to model, understand, forecast and control the behavior of many natural phenomena that evolve in time in a random way. Such phenomena appear in the fields of finance, telecommunications, economics, biology, geology, demography, physics, chemistry, signal processing and modern control theory, to mention just a few. As this book emphasizes the importance of numerical and theoretical studies of the stochastic differential equations and stochastic processes, it will be useful for a wide spectrum of researchers in applied probability, stochastic numerical and theoretical analysis and statistics, as well as for graduate students. To make it more complete and accessible for graduate students, practitioners and researchers, the editors Mounir Zili and Daria Filatova have included a survey dedicated to the basic concepts of numerical analysis of the stochastic differential equations, written by Henri Schurz.

Stochastic Networks

Stochastic Networks PDF Author: Paul Glasserman
Publisher: Springer Science & Business Media
ISBN: 146124062X
Category : Mathematics
Languages : en
Pages : 305

Get Book Here

Book Description
Two of the most exciting topics of current research in stochastic networks are the complementary subjects of stability and rare events - roughly, the former deals with the typical behavior of networks, and the latter with significant atypical behavior. Both are classical topics, of interest since the early days of queueing theory, that have experienced renewed interest mo tivated by new applications to emerging technologies. For example, new stability issues arise in the scheduling of multiple job classes in semiconduc tor manufacturing, the so-called "re-entrant lines;" and a prominent need for studying rare events is associated with the design of telecommunication systems using the new ATM (asynchronous transfer mode) technology so as to guarantee quality of service. The objective of this volume is hence to present a sample - by no means comprehensive - of recent research problems, methodologies, and results in these two exciting and burgeoning areas. The volume is organized in two parts, with the first part focusing on stability, and the second part on rare events. But it is impossible to draw sharp boundaries in a healthy field, and inevitably some articles touch on both issues and several develop links with other areas as well. Part I is concerned with the issue of stability in queueing networks.