Spectroscopy and Excitation Dynamics of Condensed Molecular Systems

Spectroscopy and Excitation Dynamics of Condensed Molecular Systems PDF Author: Vladimir Moiseevich Agranovich
Publisher: North-Holland
ISBN:
Category : Science
Languages : en
Pages : 724

Get Book Here

Book Description

Spectroscopy and Excitation Dynamics of Condensed Molecular Systems

Spectroscopy and Excitation Dynamics of Condensed Molecular Systems PDF Author: Vladimir Moiseevich Agranovich
Publisher: North-Holland
ISBN:
Category : Science
Languages : en
Pages : 724

Get Book Here

Book Description


Spectroscopy and Excitation Dynamics of Condensed Molecular Systems (Volume 4).

Spectroscopy and Excitation Dynamics of Condensed Molecular Systems (Volume 4). PDF Author: Agranovich VM.
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Spectroscopy of Condensed Media

Spectroscopy of Condensed Media PDF Author: C.H. Wang
Publisher: Elsevier
ISBN: 0323153704
Category : Science
Languages : en
Pages : 371

Get Book Here

Book Description
Spectroscopy of Condensed Media: Dynamics of Molecular Interactions discusses the use of molecular spectroscopy (including nuclear magnetic resonance [NMR] and nonlinear optical spectroscopy) in dynamic processes in condensed molecular systems. The book reviews relationship between transition probability and the time-correlation function of an isotropic electric dipole system, linear-response theory, and light scattering resulting from the translational motion of molecules in fluids. The text describes molecular rotation, theories of angular momentum, nuclear magnetic resonance, and spontaneous and coherent Raman effects. Closely related with the Raman and Brillouin scattering are vibrational dephasing, relaxation processes, and dynamics of phase transition solids. The book highlights the advantages of using NMR and also explains the basic concepts, such as local field, spin temperature, and effective Hamiltonians, that are employed in interpreting NMR experiments. The investigator can use nonlinear optical spectroscopy to study condensed matter. The text also cites two methods in which the investigator can control the time-dependent average Hamiltonian by (1) manipulating the intensity, timing, phase of the pulses, or (2) by sample spinning. The book is intended for advanced graduate students in physical chemistry that will equally benefit both investigators and scientists involved in physics research.

Dynamical Processes In Condensed Molecular Systems - Proceedings Of The Emil-warburg Symposium

Dynamical Processes In Condensed Molecular Systems - Proceedings Of The Emil-warburg Symposium PDF Author: A Blumen
Publisher: World Scientific
ISBN: 9814611476
Category :
Languages : en
Pages : 466

Get Book Here

Book Description
The research on condensed molecular solids is truly interdisciplinary, spanning the range from statistical and molecular physics to solid-state-physics, chemistry, up to materials science. This Symposium on dynamical processes in condensed molecular systems highlights the most recent developments in the field, focussing on low-dimensional and non-crystalline materials, such as Langmuir-Blodgett-films, polymers and glasses. The text includes both advanced experimental techniques (hole-burning, fluorescence, short-time pulses, nonlinear spectroscopy) and also modern theoretical approches (dynamical percolation, fractals, localization).

Dynamical Processes in Condensed Molecular Systems

Dynamical Processes in Condensed Molecular Systems PDF Author: Joseph Klafter
Publisher: World Scientific
ISBN: 9789971508814
Category : Science
Languages : en
Pages : 338

Get Book Here

Book Description
This review volume provides an up-to-date review of experimental methods and theoretical approaches in the study of dynamical processes in condensed molecular systems. The experimental contributions include hole burning in glasses and in proteins, optical dephasing in glasses, photo-conductivity in polymers, energy transfer among molecules in confining spaces and electron transfer in polar solvents. The theoretical part summarizes recent advances on hole burning, hierarchical aspects of relaxation and transport in disordered systems.

Chemical Dynamics in Condensed Phases

Chemical Dynamics in Condensed Phases PDF Author: Abraham Nitzan
Publisher: Oxford University Press
ISBN: 0192671448
Category : Science
Languages : en
Pages : 752

Get Book Here

Book Description
This second edition of Chemical Dynamics in Condensed Phases provides a substantial modification and expansion of the first edition published in 2006. Nitzan offers a uniform approach to diverse problems encountered in the study of dynamical processes in condensed phase molecular systems. The textbook focuses on three themes: contextual background material, in-depth introduction of methodologies, and analysis of several key applications. These applications are among the most fundamental processes that underlie physical, chemical, and biological phenomena in complex systems. The comprehensive, advanced, and self-contained text provides the theoretical foundations for the processes affecting molecular dynamics in condensed phases that are encountered in the chemistry laboratory as well as in biology and material science research. The mathematical tools and the physical concepts necessary to develop the chemical description are provided first, followed by a detailed discussion of the fundamental chemical processes that underlie the chemical dynamics, including quantum and classical aspects of molecular motion and the interaction of molecules with the radiation field and the surrounding thermal environment. The last part of the book discusses several key processes: accumulation and relaxation of molecular energy, chemical reaction dynamics and the interplay of these dynamics with the dynamics and relaxation of the surrounding solvent, electron transfer reactions, electrode processes and molecular conduction junctions as well as molecular response to optical stimuli in solution and at dielectric interfaces. Attention is given to combining the mathematical analysis with qualitative physical understanding of the different dynamical phenomena. New to this edition is a new chapter 19 on the interaction of molecules with light at dielectric interfaces, motivated by the surge of interest in molecular plasmonics and molecular cavity electrodynamics, as well as a section relevant to this issue added to Chapter 10. Chapters on light-matter interaction and spectroscopy have been expanded to include subjects relevant to the foundation and practice of interfacial spectroscopy. Sections have also been added to include discussion of noise and fluctuations observed in single molecule spectroscopy and in molecular junction transport.

Dynamics and Spectra in Condensed Phases

Dynamics and Spectra in Condensed Phases PDF Author: Younjoon Jung
Publisher:
ISBN:
Category :
Languages : en
Pages : 260

Get Book Here

Book Description
In this thesis, several problems regarding dynamics and spectra in condensed phases are theoretically analyzed via analytical models. The thesis consists of four main topics. First, a theoretical description of single molecule spectroscopy is presented in order to study time-dependent fluctuations of single molecule spectra in a dynamic environment. In particular, the photon counting statistics is investigated for a single molecule undergoing a generic type of spectral diffusion process. An exact analytical solution is found for this case, and various physical limits are analyzed. Second, motivated by recent experimental observations of anomalous spectral fluctuations in quantum dot systems, both the lineshape phenomenon and the photon counting statistics are explored when spectral fluctuations are characterized by power-law statistics, for which there is no finite timescale. Unique features of the power-law statistics are demonstrated in spectral properties of those systems. Third, a spectral analysis method is developed for the non-adiabatic electron transfer reactions, which allows a unified treatment of diverse kinetic regimes in the electron transfer process. The method is applied to electron transfer reactions in mixed-valence systems in order to explore the possibility of electronic coherence. Finally, effects of the nonequilibrium bath relaxation on the excitation energy transfer process are investigated by generalizing the Forster-Dexter theory of excitation energy transfer to the case of the nonstationary bath relaxation.

Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping

Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping PDF Author: Hai-Lung Dai
Publisher: World Scientific
ISBN: 9789810221119
Category : Science
Languages : en
Pages : 1148

Get Book Here

Book Description
Since the first stimulated emission pumping (SEP) experiments more than a decade ago, this technique has proven powerful for studying vibrationally excited molecules. SEP is now widely used by increasing numbers of research groups to investigate fundamental problems in spectroscopy, intramolecular dynamics, intermolecular interactions, and even reactions. SEP provides rotationally pre-selected spectra of vibrationally highly excited molecules undergoing large amplitude motions. A unique feature of SEP is the ability to access systematically a wide variety of extreme excitations localized in various parts of a molecule, and to prepare populations in specific, high vibrational levels. SEP has made it possible to ask and answer specific questions about intramolecular vibrational redistribution and the role of vibrational excitation in chemical reactions.

Molecular Spectroscopy and Quantum Dynamics

Molecular Spectroscopy and Quantum Dynamics PDF Author: Roberto Marquardt
Publisher: Elsevier
ISBN: 0128172355
Category : Science
Languages : en
Pages : 376

Get Book Here

Book Description
Molecular Spectroscopy and Quantum Dynamics, an exciting new work edited by Professors Martin Quack and Roberto Marquardt, contains comprehensive information on the current state-of-the-art experimental and theoretical methods and techniques used to unravel ultra-fast phenomena in atoms, molecules and condensed matter, along with future perspectives on the field. - Contains new insights into the quantum dynamics and spectroscopy of electronic and nuclear motion - Presents the most recent developments in the detection and interpretation of ultra-fast phenomena - Includes a discussion of the importance of these phenomena for the understanding of chemical reaction dynamics and kinetics in relation to molecular spectra and structure

Molecular Electronics

Molecular Electronics PDF Author: Gunter Mahler
Publisher: CRC Press
ISBN: 1000148467
Category : Technology & Engineering
Languages : en
Pages : 424

Get Book Here

Book Description
Integrating molecular physics and information theory, this work presents molecular electronics as a method for information storage and retrieval that incorporates nanometer-scaled systems, uses microscopic particles and exploits the laws of quantum mechanics. It furnishes application examples employing properties of distinct molecules joined together to a macroscopic ensemble of virtually identical units.