Spectral Geometry of the Laplacian: Spectral Analysis and Differential Geometry of the Laplacian

Spectral Geometry of the Laplacian: Spectral Analysis and Differential Geometry of the Laplacian PDF Author: Hajime Urakawa
Publisher: World Scientific Publishing Company
ISBN: 9789813109087
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz-Obata's theorem on the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne-Pólya-Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian are also described. Then, the theorem of Colin de Verdier, that is, the spectrum determines the totality of all the lengths of closed geodesics is described. We give the V Guillemin and D Kazhdan's theorem which determines the Riemannian manifold of negative curvature.

Spectral Geometry of the Laplacian: Spectral Analysis and Differential Geometry of the Laplacian

Spectral Geometry of the Laplacian: Spectral Analysis and Differential Geometry of the Laplacian PDF Author: Hajime Urakawa
Publisher: World Scientific Publishing Company
ISBN: 9789813109087
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz-Obata's theorem on the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne-Pólya-Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian are also described. Then, the theorem of Colin de Verdier, that is, the spectrum determines the totality of all the lengths of closed geodesics is described. We give the V Guillemin and D Kazhdan's theorem which determines the Riemannian manifold of negative curvature.

Spectral Geometry Of The Laplacian: Spectral Analysis And Differential Geometry Of The Laplacian

Spectral Geometry Of The Laplacian: Spectral Analysis And Differential Geometry Of The Laplacian PDF Author: Hajime Urakawa
Publisher: World Scientific
ISBN: 9813109106
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz-Obata's theorem on the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne-Pólya-Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian are also described. Then, the theorem of Colin de Verdière, that is, the spectrum determines the totality of all the lengths of closed geodesics is described. We give the V Guillemin and D Kazhdan's theorem which determines the Riemannian manifold of negative curvature.

The Laplacian on a Riemannian Manifold

The Laplacian on a Riemannian Manifold PDF Author: Steven Rosenberg
Publisher: Cambridge University Press
ISBN: 9780521468312
Category : Mathematics
Languages : en
Pages : 190

Get Book Here

Book Description
This text on analysis of Riemannian manifolds is aimed at students who have had a first course in differentiable manifolds.

Spectral Geometry

Spectral Geometry PDF Author: Pierre H. Berard
Publisher: Springer
ISBN: 3540409580
Category : Mathematics
Languages : en
Pages : 284

Get Book Here

Book Description


Old and New Aspects in Spectral Geometry

Old and New Aspects in Spectral Geometry PDF Author: M.-E. Craioveanu
Publisher: Springer Science & Business Media
ISBN: 940172475X
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
It is known that to any Riemannian manifold (M, g ) , with or without boundary, one can associate certain fundamental objects. Among them are the Laplace-Beltrami opera tor and the Hodge-de Rham operators, which are natural [that is, they commute with the isometries of (M,g)], elliptic, self-adjoint second order differential operators acting on the space of real valued smooth functions on M and the spaces of smooth differential forms on M, respectively. If M is closed, the spectrum of each such operator is an infinite divergent sequence of real numbers, each eigenvalue being repeated according to its finite multiplicity. Spectral Geometry is concerned with the spectra of these operators, also the extent to which these spectra determine the geometry of (M, g) and the topology of M. This problem has been translated by several authors (most notably M. Kac). into the col loquial question "Can one hear the shape of a manifold?" because of its analogy with the wave equation. This terminology was inspired from earlier results of H. Weyl. It is known that the above spectra cannot completely determine either the geometry of (M , g) or the topology of M. For instance, there are examples of pairs of closed Riemannian manifolds with the same spectra corresponding to the Laplace-Beltrami operators, but which differ substantially in their geometry and which are even not homotopically equiva lent.

Topics in Spectral Geometry

Topics in Spectral Geometry PDF Author: Michael Levitin
Publisher: American Mathematical Society
ISBN: 1470475251
Category : Mathematics
Languages : en
Pages : 346

Get Book Here

Book Description
It is remarkable that various distinct physical phenomena, such as wave propagation, heat diffusion, electron movement in quantum mechanics, oscillations of fluid in a container, can be described using the same differential operator, the Laplacian. Spectral data (i.e., eigenvalues and eigenfunctions) of the Laplacian depend in a subtle way on the geometry of the underlying object, e.g., a Euclidean domain or a Riemannian manifold, on which the operator is defined. This dependence, or, rather, the interplay between the geometry and the spectrum, is the main subject of spectral geometry. Its roots can be traced to Ernst Chladni's experiments with vibrating plates, Lord Rayleigh's theory of sound, and Mark Kac's celebrated question “Can one hear the shape of a drum?” In the second half of the twentieth century spectral geometry emerged as a separate branch of geometric analysis. Nowadays it is a rapidly developing area of mathematics, with close connections to other fields, such as differential geometry, mathematical physics, partial differential equations, number theory, dynamical systems, and numerical analysis. This book can be used for a graduate or an advanced undergraduate course on spectral geometry, starting from the basics but at the same time covering some of the exciting recent developments which can be explained without too many prerequisites.

Spectral Geometry of Partial Differential Operators

Spectral Geometry of Partial Differential Operators PDF Author: Michael Ruzhansky
Publisher: Chapman & Hall/CRC
ISBN: 9781138360716
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Access; Differential; Durvudkhan; Geometry; Makhmud; Michael; OA; Open; Operators; Partial; Ruzhansky; Sadybekov; Spectral; Suragan.

Le spectre des surfaces hyperboliques

Le spectre des surfaces hyperboliques PDF Author: Nicolas Bergeron
Publisher: Harlequin
ISBN: 2759805646
Category : Mathematics
Languages : fr
Pages : 350

Get Book Here

Book Description
This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called ĺlarithmetic hyperbolic surfacesĺl, the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them. After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss. The fruit of several graduate level courses at Orsay and Jussieu, The Spectrum of Hyperbolic Surfaces allows the reader to review an array of classical results and then to be led towards very active areas in modern mathematics.

Geometry and Spectra of Compact Riemann Surfaces

Geometry and Spectra of Compact Riemann Surfaces PDF Author: Peter Buser
Publisher: Springer Science & Business Media
ISBN: 0817649921
Category : Mathematics
Languages : en
Pages : 473

Get Book Here

Book Description
This monograph is a self-contained introduction to the geometry of Riemann Surfaces of constant curvature –1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. Research workers and graduate students interested in compact Riemann surfaces will find here a number of useful tools and insights to apply to their investigations.

Spectral Theory and Geometry

Spectral Theory and Geometry PDF Author: E. Brian Davies
Publisher: Cambridge University Press
ISBN: 0521777496
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
Authoritative lectures from world experts on spectral theory and geometry.