Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs

Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs PDF Author: Pierluigi Colli
Publisher: Springer
ISBN: 3319644890
Category : Mathematics
Languages : en
Pages : 572

Get Book Here

Book Description
This volume gathers contributions in the field of partial differential equations, with a focus on mathematical models in phase transitions, complex fluids and thermomechanics. These contributions are dedicated to Professor Gianni Gilardi on the occasion of his 70th birthday. It particularly develops the following thematic areas: nonlinear dynamic and stationary equations; well-posedness of initial and boundary value problems for systems of PDEs; regularity properties for the solutions; optimal control problems and optimality conditions; feedback stabilization and stability results. Most of the articles are presented in a self-contained manner, and describe new achievements and/or the state of the art in their line of research, providing interested readers with an overview of recent advances and future research directions in PDEs.

Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs

Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs PDF Author: Pierluigi Colli
Publisher: Springer
ISBN: 3319644890
Category : Mathematics
Languages : en
Pages : 572

Get Book Here

Book Description
This volume gathers contributions in the field of partial differential equations, with a focus on mathematical models in phase transitions, complex fluids and thermomechanics. These contributions are dedicated to Professor Gianni Gilardi on the occasion of his 70th birthday. It particularly develops the following thematic areas: nonlinear dynamic and stationary equations; well-posedness of initial and boundary value problems for systems of PDEs; regularity properties for the solutions; optimal control problems and optimality conditions; feedback stabilization and stability results. Most of the articles are presented in a self-contained manner, and describe new achievements and/or the state of the art in their line of research, providing interested readers with an overview of recent advances and future research directions in PDEs.

Frontiers in PDE-Constrained Optimization

Frontiers in PDE-Constrained Optimization PDF Author: Harbir Antil
Publisher: Springer
ISBN: 1493986368
Category : Mathematics
Languages : en
Pages : 435

Get Book Here

Book Description
This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs)​. As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.

Topics in Applied Analysis and Optimisation

Topics in Applied Analysis and Optimisation PDF Author: Michael Hintermüller
Publisher: Springer Nature
ISBN: 3030331164
Category : Mathematics
Languages : en
Pages : 406

Get Book Here

Book Description
This volume comprises selected, revised papers from the Joint CIM-WIAS Workshop, TAAO 2017, held in Lisbon, Portugal, in December 2017. The workshop brought together experts from research groups at the Weierstrass Institute in Berlin and mathematics centres in Portugal to present and discuss current scientific topics and to promote existing and future collaborations. The papers include the following topics: PDEs with applications to material sciences, thermodynamics and laser dynamics, scientific computing, nonlinear optimization and stochastic analysis.

Optimization and Control for Partial Differential Equations

Optimization and Control for Partial Differential Equations PDF Author: Roland Herzog
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110695987
Category : Mathematics
Languages : en
Pages : 474

Get Book Here

Book Description
This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.

Boundary Stabilization of Parabolic Equations

Boundary Stabilization of Parabolic Equations PDF Author: Ionuţ Munteanu
Publisher: Springer
ISBN: 3030110990
Category : Science
Languages : en
Pages : 222

Get Book Here

Book Description
This monograph presents a technique, developed by the author, to design asymptotically exponentially stabilizing finite-dimensional boundary proportional-type feedback controllers for nonlinear parabolic-type equations. The potential control applications of this technique are wide ranging in many research areas, such as Newtonian fluid flows modeled by the Navier-Stokes equations; electrically conducted fluid flows; phase separation modeled by the Cahn-Hilliard equations; and deterministic or stochastic semi-linear heat equations arising in biology, chemistry, and population dynamics modeling. The text provides answers to the following problems, which are of great practical importance: Designing the feedback law using a minimal set of eigenfunctions of the linear operator obtained from the linearized equation around the target state Designing observers for the considered control systems Constructing time-discrete controllers requiring only partial knowledge of the state After reviewing standard notations and results in functional analysis, linear algebra, probability theory and PDEs, the author describes his novel stabilization algorithm. He then demonstrates how this abstract model can be applied to stabilization problems involving magnetohydrodynamic equations, stochastic PDEs, nonsteady-states, and more. Boundary Stabilization of Parabolic Equations will be of particular interest to researchers in control theory and engineers whose work involves systems control. Familiarity with linear algebra, operator theory, functional analysis, partial differential equations, and stochastic partial differential equations is required.

Optimal Control Problems for Partial Differential Equations on Reticulated Domains

Optimal Control Problems for Partial Differential Equations on Reticulated Domains PDF Author: Peter I. Kogut
Publisher: Springer Science & Business Media
ISBN: 0817681493
Category : Science
Languages : en
Pages : 639

Get Book Here

Book Description
In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for graduate students, researchers, and practitioners in mathematics and areas of engineering involving reticulated domains.

Approximation Methods in Optimization of Nonlinear Systems

Approximation Methods in Optimization of Nonlinear Systems PDF Author: Peter I. Kogut
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110668599
Category : Mathematics
Languages : en
Pages : 462

Get Book Here

Book Description
The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Editor-in-Chief J rgen Appell, W rzburg, Germany Honorary and Advisory Editors Catherine Bandle, Basel, Switzerland Alain Bensoussan, Richardson, Texas, USA Avner Friedman, Columbus, Ohio, USA Umberto Mosco, Worcester, Massachusetts, USA Louis Nirenberg, New York, USA Alfonso Vignoli, Rome, Italy Editorial Board Manuel del Pino, Bath, UK, and Santiago, Chile Mikio Kato, Nagano, Japan Wojciech Kryszewski, Toruń, Poland Vicenţiu D. Rădulescu, Krak w, Poland Simeon Reich, Haifa, Israel Please submit book proposals to J rgen Appell. Titles in planning include Lucio Damascelli and Filomena Pacella, Morse Index of Solutions of Nonlinear Elliptic Equations (2019) Tomasz W. Dlotko and Yejuan Wang, Critical Parabolic-Type Problems (2019) Rafael Ortega, Periodic Differential Equations in the Plane: A Topological Perspective (2019) Ireneo Peral Alonso and Fernando Soria, Elliptic and Parabolic Equations Involving the Hardy-Leray Potential (2020) Cyril Tintarev, Profile Decompositions and Cocompactness: Functional-Analytic Theory of Concentration Compactness (2020) Takashi Suzuki, Semilinear Elliptic Equations: Classical and Modern Theories (2021)

System Modeling and Optimization XX

System Modeling and Optimization XX PDF Author: E.W. Sachs
Publisher: Springer
ISBN: 0387356991
Category : Technology & Engineering
Languages : en
Pages : 334

Get Book Here

Book Description
System Modeling and Optimization XX deals with new developments in the areas of optimization, optimal control and system modeling. The themes range across various areas of optimization: continuous and discrete, numerical and analytical, finite and infinite dimensional, deterministic and stochastic, static and dynamic, theory and applications, foundations and case studies. Besides some classical topics, modern areas are also presented in the contributions, including robust optimization, filter methods, optimization of power networks, data mining and risk control. This volume contains invited and selected papers from presentations at the 20th IFIP TC7 Conference on System Modeling and Optimization, which took place at the University of Trier, Germany from July 23 to 27, 2001, and which was sponsored by the International Federation for Information Processing (IFIP).

Adjoint Equations and Perturbation Algorithms in Nonlinear Problems

Adjoint Equations and Perturbation Algorithms in Nonlinear Problems PDF Author: Guri I. Marchuk
Publisher: CRC Press
ISBN: 1351468790
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
Sparked by demands inherent to the mathematical study of pollution, intensive industry, global warming, and the biosphere, Adjoint Equations and Perturbation Algorithms in Nonlinear Problems is the first book ever to systematically present the theory of adjoint equations for nonlinear problems, as well as their application to perturbation algorithms. This new approach facilitates analysis of observational data, the application of adjoint equations to retrospective study of processes governed by imitation models, and the study of computer models themselves. Specifically, the book discusses: Principles for constructing adjoint operators in nonlinear problems Properties of adjoint operators and solvability conditions for adjoint equations Perturbation algorithms using the adjoint equations theory for nonlinear problems in transport theory, quasilinear motion, substance transfer, and nonlinear data assimilation Known results on adjoint equations and perturbation algorithms in nonlinear problems This groundbreaking text contains some results that have no analogs in the scientific literature, opening unbounded possibilities in construction and application of adjoint equations to nonlinear problems of mathematical physics.

Elliptic Partial Differential Equations of Second Order

Elliptic Partial Differential Equations of Second Order PDF Author: David Gilbarg
Publisher: Springer
ISBN: 3642617980
Category : Mathematics
Languages : en
Pages : 531

Get Book Here

Book Description
From the reviews: "This is a book of interest to any having to work with differential equations, either as a reference or as a book to learn from. The authors have taken trouble to make the treatment self-contained. It (is) suitable required reading for a PhD student." --New Zealand Mathematical Society, 1985