Author: Fritz Gesztesy
Publisher: Cambridge University Press
ISBN: 9780521753081
Category : Mathematics
Languages : en
Pages : 0
Book Description
As a partner to Volume 1: Dimensional Continuous Models, this book provides a self-contained introduction to solition equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices.
Soliton Equations and Their Algebro-Geometric Solutions: Volume 2, (1+1)-Dimensional Discrete Models
Author: Fritz Gesztesy
Publisher: Cambridge University Press
ISBN: 9780521753081
Category : Mathematics
Languages : en
Pages : 0
Book Description
As a partner to Volume 1: Dimensional Continuous Models, this book provides a self-contained introduction to solition equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices.
Publisher: Cambridge University Press
ISBN: 9780521753081
Category : Mathematics
Languages : en
Pages : 0
Book Description
As a partner to Volume 1: Dimensional Continuous Models, this book provides a self-contained introduction to solition equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices.
Soliton Equations and Their Algebro-geometric Solutions: (1 + 1)-dimensional discrete models
Author: Fritz Gesztesy
Publisher:
ISBN:
Category : Differential equations, Nonlinear
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Differential equations, Nonlinear
Languages : en
Pages :
Book Description
Soliton Equations and Their Algebro-Geometric Solutions: Volume 2, (1+1)-Dimensional Discrete Models
Author: Fritz Gesztesy
Publisher: Cambridge University Press
ISBN: 1139473778
Category : Mathematics
Languages : en
Pages : 438
Book Description
As a partner to Volume 1: Dimensional Continuous Models, this monograph provides a self-contained introduction to algebro-geometric solutions of completely integrable, nonlinear, partial differential-difference equations, also known as soliton equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices. Detailed notes for each chapter, together with an exhaustive bibliography, enhance understanding of the main results.
Publisher: Cambridge University Press
ISBN: 1139473778
Category : Mathematics
Languages : en
Pages : 438
Book Description
As a partner to Volume 1: Dimensional Continuous Models, this monograph provides a self-contained introduction to algebro-geometric solutions of completely integrable, nonlinear, partial differential-difference equations, also known as soliton equations. The systems studied in this volume include the Toda lattice hierarchy, the Kac-van Moerbeke hierarchy, and the Ablowitz-Ladik hierarchy. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The theory presented includes trace formulas, algebro-geometric initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses basic techniques from the theory of difference equations and spectral analysis, some elements of algebraic geometry and especially, the theory of compact Riemann surfaces. The presentation is constructive and rigorous, with ample background material provided in various appendices. Detailed notes for each chapter, together with an exhaustive bibliography, enhance understanding of the main results.
Soliton Equations and Their Algebro-geometric Solutions
Author: Fritz Gesztesy
Publisher:
ISBN: 9780511427664
Category : Differential equations, Nonlinear
Languages : en
Pages : 438
Book Description
Detailed treatment of the class of algebro-geometric solutions and their representations in terms of Riemann theta functions.
Publisher:
ISBN: 9780511427664
Category : Differential equations, Nonlinear
Languages : en
Pages : 438
Book Description
Detailed treatment of the class of algebro-geometric solutions and their representations in terms of Riemann theta functions.
Soliton Equations and their Algebro-Geometric Solutions: Volume 1, (1+1)-Dimensional Continuous Models
Author: Fritz Gesztesy
Publisher: Cambridge University Press
ISBN: 9781139439411
Category : Mathematics
Languages : en
Pages : 522
Book Description
The focus of this book is on algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions, also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces). The presentation is rigorous, detailed, and self-contained, with ample background material provided in various appendices. Detailed notes for each chapter together with an exhaustive bibliography enhance the presentation offered in the main text.
Publisher: Cambridge University Press
ISBN: 9781139439411
Category : Mathematics
Languages : en
Pages : 522
Book Description
The focus of this book is on algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions, also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces). The presentation is rigorous, detailed, and self-contained, with ample background material provided in various appendices. Detailed notes for each chapter together with an exhaustive bibliography enhance the presentation offered in the main text.
Soliton Equations and their Algebro-Geometric Solutions: Volume 1, (1+1)-Dimensional Continuous Models
Author: Fritz Gesztesy
Publisher: Cambridge University Press
ISBN: 9780521753074
Category : Mathematics
Languages : en
Pages : 518
Book Description
This book is about algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions; also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary and time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces).
Publisher: Cambridge University Press
ISBN: 9780521753074
Category : Mathematics
Languages : en
Pages : 518
Book Description
This book is about algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions; also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary and time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces).
Continuous Symmetries and Integrability of Discrete Equations
Author: Decio Levi
Publisher: American Mathematical Society, Centre de Recherches Mathématiques
ISBN: 0821843540
Category : Mathematics
Languages : en
Pages : 520
Book Description
This book on integrable systems and symmetries presents new results on applications of symmetries and integrability techniques to the case of equations defined on the lattice. This relatively new field has many applications, for example, in describing the evolution of crystals and molecular systems defined on lattices, and in finding numerical approximations for differential equations preserving their symmetries. The book contains three chapters and five appendices. The first chapter is an introduction to the general ideas about symmetries, lattices, differential difference and partial difference equations and Lie point symmetries defined on them. Chapter 2 deals with integrable and linearizable systems in two dimensions. The authors start from the prototype of integrable and linearizable partial differential equations, the Korteweg de Vries and the Burgers equations. Then they consider the best known integrable differential difference and partial difference equations. Chapter 3 considers generalized symmetries and conserved densities as integrability criteria. The appendices provide details which may help the readers' understanding of the subjects presented in Chapters 2 and 3. This book is written for PhD students and early researchers, both in theoretical physics and in applied mathematics, who are interested in the study of symmetries and integrability of difference equations.
Publisher: American Mathematical Society, Centre de Recherches Mathématiques
ISBN: 0821843540
Category : Mathematics
Languages : en
Pages : 520
Book Description
This book on integrable systems and symmetries presents new results on applications of symmetries and integrability techniques to the case of equations defined on the lattice. This relatively new field has many applications, for example, in describing the evolution of crystals and molecular systems defined on lattices, and in finding numerical approximations for differential equations preserving their symmetries. The book contains three chapters and five appendices. The first chapter is an introduction to the general ideas about symmetries, lattices, differential difference and partial difference equations and Lie point symmetries defined on them. Chapter 2 deals with integrable and linearizable systems in two dimensions. The authors start from the prototype of integrable and linearizable partial differential equations, the Korteweg de Vries and the Burgers equations. Then they consider the best known integrable differential difference and partial difference equations. Chapter 3 considers generalized symmetries and conserved densities as integrability criteria. The appendices provide details which may help the readers' understanding of the subjects presented in Chapters 2 and 3. This book is written for PhD students and early researchers, both in theoretical physics and in applied mathematics, who are interested in the study of symmetries and integrability of difference equations.
Modern Analysis and Applications
Author: Vadim Adamyan
Publisher: Springer Science & Business Media
ISBN: 376439921X
Category : Mathematics
Languages : en
Pages : 518
Book Description
This is the second of two volumes containing peer-reviewed research and survey papers based on talks at the International Conference on Modern Analysis and Applications. The papers describe the contemporary development of subjects influenced by Mark Krein.
Publisher: Springer Science & Business Media
ISBN: 376439921X
Category : Mathematics
Languages : en
Pages : 518
Book Description
This is the second of two volumes containing peer-reviewed research and survey papers based on talks at the International Conference on Modern Analysis and Applications. The papers describe the contemporary development of subjects influenced by Mark Krein.
Jacobi Matrices and the Moment Problem
Author: Yurij M. Berezansky
Publisher: Springer Nature
ISBN: 3031463870
Category : Mathematics
Languages : en
Pages : 489
Book Description
This monograph presents the solution of the classical moment problem, the construction of Jacobi matrices and corresponding polynomials. The cases of strongly,trigonometric, complex and real two-dimensional moment problems are discussed, and the Jacobi-type matrices corresponding to the trigonometric moment problem are shown. The Berezansky theory of the expansion in generalized eigenvectors for corresponding set of commuting operators plays the key role in the proof of results. The book is recommended for researchers in fields of functional analysis, operator theory, mathematical physics, and engineers who deal with problems of coupled pendulums.
Publisher: Springer Nature
ISBN: 3031463870
Category : Mathematics
Languages : en
Pages : 489
Book Description
This monograph presents the solution of the classical moment problem, the construction of Jacobi matrices and corresponding polynomials. The cases of strongly,trigonometric, complex and real two-dimensional moment problems are discussed, and the Jacobi-type matrices corresponding to the trigonometric moment problem are shown. The Berezansky theory of the expansion in generalized eigenvectors for corresponding set of commuting operators plays the key role in the proof of results. The book is recommended for researchers in fields of functional analysis, operator theory, mathematical physics, and engineers who deal with problems of coupled pendulums.
Rogue Waves
Author: Boling Guo
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110470578
Category : Mathematics
Languages : en
Pages : 212
Book Description
This book gives an overview of the theoretical research on rogue waves and discusses solutions to rogue wave formation via the Darboux and bilinear transformations, algebro-geometric reduction, and inverse scattering and similarity transformations. Studies on nonlinear optics are included, making the book a comprehensive reference for researchers in applied mathematics, optical physics, geophysics, and ocean engineering. Contents The Research Process for Rogue Waves Construction of Rogue Wave Solution by the Generalized Darboux Transformation Construction of Rogue Wave Solution by Hirota Bilinear Method, Algebro-geometric Approach and Inverse Scattering Method The Rogue Wave Solution and Parameters Managing in Nonautonomous Physical Model
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110470578
Category : Mathematics
Languages : en
Pages : 212
Book Description
This book gives an overview of the theoretical research on rogue waves and discusses solutions to rogue wave formation via the Darboux and bilinear transformations, algebro-geometric reduction, and inverse scattering and similarity transformations. Studies on nonlinear optics are included, making the book a comprehensive reference for researchers in applied mathematics, optical physics, geophysics, and ocean engineering. Contents The Research Process for Rogue Waves Construction of Rogue Wave Solution by the Generalized Darboux Transformation Construction of Rogue Wave Solution by Hirota Bilinear Method, Algebro-geometric Approach and Inverse Scattering Method The Rogue Wave Solution and Parameters Managing in Nonautonomous Physical Model