Sobolev Gradients and Differential Equations

Sobolev Gradients and Differential Equations PDF Author: John Neuberger
Publisher: Springer Science & Business Media
ISBN: 3642040403
Category : Mathematics
Languages : en
Pages : 287

Get Book Here

Book Description
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair portion of the material have in the past been able to use the theory on their own applications and also gain an appreciation of the possibility of a rather comprehensive point of view on the subject of partial differential equations.

Sobolev Gradients and Differential Equations

Sobolev Gradients and Differential Equations PDF Author: John Neuberger
Publisher: Springer Science & Business Media
ISBN: 3642040403
Category : Mathematics
Languages : en
Pages : 287

Get Book Here

Book Description
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair portion of the material have in the past been able to use the theory on their own applications and also gain an appreciation of the possibility of a rather comprehensive point of view on the subject of partial differential equations.

Sobolev Gradients and Differential Equations

Sobolev Gradients and Differential Equations PDF Author: John W. Neuberger
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 164

Get Book Here

Book Description
A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.

Sobolev gradients and differential equations

Sobolev gradients and differential equations PDF Author: John William Neuberger
Publisher:
ISBN: 9783642040573
Category :
Languages : de
Pages : 149

Get Book Here

Book Description


Gradient Inequalities

Gradient Inequalities PDF Author: Sen-Zhong Huang
Publisher: American Mathematical Soc.
ISBN: 0821840703
Category : Mathematics
Languages : en
Pages : 194

Get Book Here

Book Description
This book presents a survey of the relatively new research field of gradient inequalities and their applications. The exposition emphasizes the powerful applications of gradient inequalities in studying asymptotic behavior and stability of gradient-like dynamical systems. It explains in-depth how gradient inequalities are established and how they can be used to prove convergence and stability of solutions to gradient-like systems. This book will serve as an introduction for furtherstudies of gradient inequalities and their applications in other fields, such as geometry and computer sciences. This book is written for advanced graduate students, researchers and applied mathematicians interested in dynamical systems and mathematical modeling.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF Author: Haim Brezis
Publisher: Springer Science & Business Media
ISBN: 0387709142
Category : Mathematics
Languages : en
Pages : 600

Get Book Here

Book Description
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Regular Variation and Differential Equations

Regular Variation and Differential Equations PDF Author: Vojislav Maric
Publisher: Springer Science & Business Media
ISBN: 9783540671602
Category : Mathematics
Languages : en
Pages : 148

Get Book Here

Book Description
This book constitutes the refereed proceedings of the Third Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD '99, held in Beijing, China, in April 1999. The 29 revised full papers presented together with 37 short papers were carefully selected from a total of 158 submissions. The book is divided into sections on emerging KDD technology; association rules; feature selection and generation; mining in semi-unstructured data; interestingness, surprisingness, and exceptions; rough sets, fuzzy logic, and neural networks; induction, classification, and clustering; visualization; causal models and graph-based methods; agent-based and distributed data mining; and advanced topics and new methodologies.

Elliptic–Hyperbolic Partial Differential Equations

Elliptic–Hyperbolic Partial Differential Equations PDF Author: Thomas H. Otway
Publisher: Springer
ISBN: 3319197614
Category : Mathematics
Languages : en
Pages : 134

Get Book Here

Book Description
This text is a concise introduction to the partial differential equations which change from elliptic to hyperbolic type across a smooth hypersurface of their domain. These are becoming increasingly important in diverse sub-fields of both applied mathematics and engineering, for example: • The heating of fusion plasmas by electromagnetic waves • The behaviour of light near a caustic • Extremal surfaces in the space of special relativity • The formation of rapids; transonic and multiphase fluid flow • The dynamics of certain models for elastic structures • The shape of industrial surfaces such as windshields and airfoils • Pathologies of traffic flow • Harmonic fields in extended projective space They also arise in models for the early universe, for cosmic acceleration, and for possible violation of causality in the interiors of certain compact stars. Within the past 25 years, they have become central to the isometric embedding of Riemannian manifolds and the prescription of Gauss curvature for surfaces: topics in pure mathematics which themselves have important applications. Elliptic−Hyperbolic Partial Differential Equations is derived from a mini-course given at the ICMS Workshop on Differential Geometry and Continuum Mechanics held in Edinburgh, Scotland in June 2013. The focus on geometry in that meeting is reflected in these notes, along with the focus on quasilinear equations. In the spirit of the ICMS workshop, this course is addressed both to applied mathematicians and to mathematically-oriented engineers. The emphasis is on very recent applications and methods, the majority of which have not previously appeared in book form.

Pattern Recognition

Pattern Recognition PDF Author: Rudolf Mester
Publisher: Springer
ISBN: 3642231233
Category : Computers
Languages : en
Pages : 490

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 33rd Symposium of the German Association for Pattern Recognition, DAGM 2011, held in Frankfurt/Main, Germany, in August/September 2011. The 20 revised full papers and 22 revised poster papers were carefully reviewed and selected from 98 submissions. The papers are organized in topical sections on object recognition, adverse vision conditions challenge, shape and matching, segmentation and early vision, robot vision, machine learning, and motion. The volume also includes the young researcher's forum, a section where a carefully jury-selected ensemble of young researchers present their Master thesis work.

Sobolev Spaces

Sobolev Spaces PDF Author: Vladimir Maz'ya
Publisher: Springer
ISBN: 3662099225
Category : Mathematics
Languages : en
Pages : 506

Get Book Here

Book Description
The Sobolev spaces, i. e. the classes of functions with derivatives in L , occupy p an outstanding place in analysis. During the last two decades a substantial contribution to the study of these spaces has been made; so now solutions to many important problems connected with them are known. In the present monograph we consider various aspects of Sobolev space theory. Attention is paid mainly to the so called imbedding theorems. Such theorems, originally established by S. L. Sobolev in the 1930s, proved to be a useful tool in functional analysis and in the theory of linear and nonlinear par tial differential equations. We list some questions considered in this book. 1. What are the requirements on the measure f1, for the inequality q

Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations

Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations PDF Author: Wolfgang Arendt
Publisher: Springer Science & Business Media
ISBN: 3034802978
Category : Mathematics
Languages : en
Pages : 684

Get Book Here

Book Description
The present volume contains a collection of original research articles and expository contributions on recent developments in operator theory and its multifaceted applications. They cover a wide range of themes from the IWOTA 2010 conference held at the TU Berlin, Germany, including spectral theory, function spaces, mathematical system theory, evolution equations and semigroups, and differential and difference operators. The book encompasses new trends and various modern topics in operator theory, and serves as a useful source of information to mathematicians, scientists and engineers.