Structure Analysis by Small-Angle X-Ray and Neutron Scattering

Structure Analysis by Small-Angle X-Ray and Neutron Scattering PDF Author: L.A. Feigin
Publisher: Springer Science & Business Media
ISBN: 1475766246
Category : Science
Languages : en
Pages : 339

Get Book Here

Book Description
Small-angle scattering of X rays and neutrons is a widely used diffraction method for studying the structure of matter. This method of elastic scattering is used in various branches of science and technology, includ ing condensed matter physics, molecular biology and biophysics, polymer science, and metallurgy. Many small-angle scattering studies are of value for pure science and practical applications. It is well known that the most general and informative method for investigating the spatial structure of matter is based on wave-diffraction phenomena. In diffraction experiments a primary beam of radiation influences a studied object, and the scattering pattern is analyzed. In principle, this analysis allows one to obtain information on the structure of a substance with a spatial resolution determined by the wavelength of the radiation. Diffraction methods are used for studying matter on all scales, from elementary particles to macro-objects. The use of X rays, neutrons, and electron beams, with wavelengths of about 1 A, permits the study of the condensed state of matter, solids and liquids, down to atomic resolution. Determination of the atomic structure of crystals, i.e., the arrangement of atoms in a unit cell, is an important example of this line of investigation.

Structure Analysis by Small-Angle X-Ray and Neutron Scattering

Structure Analysis by Small-Angle X-Ray and Neutron Scattering PDF Author: L.A. Feigin
Publisher: Springer Science & Business Media
ISBN: 1475766246
Category : Science
Languages : en
Pages : 339

Get Book Here

Book Description
Small-angle scattering of X rays and neutrons is a widely used diffraction method for studying the structure of matter. This method of elastic scattering is used in various branches of science and technology, includ ing condensed matter physics, molecular biology and biophysics, polymer science, and metallurgy. Many small-angle scattering studies are of value for pure science and practical applications. It is well known that the most general and informative method for investigating the spatial structure of matter is based on wave-diffraction phenomena. In diffraction experiments a primary beam of radiation influences a studied object, and the scattering pattern is analyzed. In principle, this analysis allows one to obtain information on the structure of a substance with a spatial resolution determined by the wavelength of the radiation. Diffraction methods are used for studying matter on all scales, from elementary particles to macro-objects. The use of X rays, neutrons, and electron beams, with wavelengths of about 1 A, permits the study of the condensed state of matter, solids and liquids, down to atomic resolution. Determination of the atomic structure of crystals, i.e., the arrangement of atoms in a unit cell, is an important example of this line of investigation.

Small-Angle Scattering of X-Rays

Small-Angle Scattering of X-Rays PDF Author: Andre Guinier
Publisher:
ISBN:
Category : X-rays
Languages : en
Pages : 268

Get Book Here

Book Description


Catalyst Characterization

Catalyst Characterization PDF Author: Boris Imelik
Publisher: Springer Science & Business Media
ISBN: 1475795890
Category : Science
Languages : en
Pages : 720

Get Book Here

Book Description
to the Fundamental and Applied Catalysis Series Catalysis is important academically and industrially. It plays an essential role in the manufacture of a wide range of products, from gasoline and plastics to fertilizers and herbicides, which would otherwise be unobtainable or prohibitive ly expensive. There are few chemical-or oil-based material items in modern society that do not depend in some way on a catalytic stage in their manufacture. Apart from manufacturing processes, catalysis is finding other important and over-increasing uses; for example, successful applications of catalysis in the control ofpollution and its use in environmental control are certain to in crease in the future. The commercial import an ce of catalysis and the diverse intellectual challenges of catalytic phenomena have stimulated study by a broad spectrum of scientists including chemists, physicists, chemical engineers, and material scientists. Increasing research activity over the years has brought deeper levels of understanding, and these have been associated with a continually growing amount of published material. As recentlyas sixty years ago, Rideal and Taylor could still treat the subject comprehensively in a single volume, but by the 19 50s Emmett required six volumes, and no conventional multivolume text could now cover the whole of catalysis in any depth.

Small-Angle Scattering (Neutrons, X-Rays, Light) from Complex Systems

Small-Angle Scattering (Neutrons, X-Rays, Light) from Complex Systems PDF Author: Eugen Mircea Anitas
Publisher: Springer
ISBN: 3030266125
Category : Science
Languages : en
Pages : 121

Get Book Here

Book Description
This book addresses the basic physical phenomenon of small-angle scattering (SAS) of neutrons, x-rays or light from complex hierarchical nano- and micro-structures. The emphasis is on developing theoretical models for the material structure containing self-similar or fractal clusters. Within the suggested framework, key approaches for extracting structural information from experimental scattering data are investigated and presented in detail. The range of parameters which can be obtained pave the road towards a better understanding of the correlations between geometrical and various physical properties (electrical, magnetic, mechanical, optical, dynamical, transport etc.) in fractal nano- and micro-materials.

Biological Small Angle Scattering: Techniques, Strategies and Tips

Biological Small Angle Scattering: Techniques, Strategies and Tips PDF Author: Barnali Chaudhuri
Publisher: Springer
ISBN: 981106038X
Category : Science
Languages : en
Pages : 269

Get Book Here

Book Description
This book provides a clear, comprehensible and up-to-date description of how Small Angle Scattering (SAS) can help structural biology researchers. SAS is an efficient technique that offers structural information on how biological macromolecules behave in solution. SAS provides distinct and complementary data for integrative structural biology approaches in combination with other widely used probes, such as X-ray crystallography, Nuclear magnetic resonance, Mass spectrometry and Cryo-electron Microscopy. The development of brilliant synchrotron small-angle X-ray scattering (SAXS) beam lines has increased the number of researchers interested in solution scattering. SAS is especially useful for studying conformational changes in proteins, highly flexible proteins, and intrinsically disordered proteins. Small-angle neutron scattering (SANS) with neutron contrast variation is ideally suited for studying multi-component assemblies as well as membrane proteins that are stabilized in surfactant micelles or vesicles. SAS is also used for studying dynamic processes of protein fibrillation in amyloid diseases, and pharmaceutical drug delivery. The combination with size-exclusion chromatography further increases the range of SAS applications. The book is written by leading experts in solution SAS methodologies. The principles and theoretical background of various SAS techniques are included, along with practical aspects that range from sample preparation to data presentation for publication. Topics covered include techniques for improving data quality and analysis, as well as different scientific applications of SAS. With abundant illustrations and practical tips, we hope the clear explanations of the principles and the reviews on the latest progresses will serve as a guide through all aspects of biological solution SAS. The scope of this book is particularly relevant for structural biology researchers who are new to SAS. Advanced users of the technique will find it helpful for exploring the diversity of solution SAS methods and applications. Chapter 3 of this book is available open access under a CC BY 4.0 license at link.springer.com.

Soft-Matter Characterization

Soft-Matter Characterization PDF Author: Redouane Borsali
Publisher: Springer Science & Business Media
ISBN: 140204464X
Category : Science
Languages : en
Pages : 1490

Get Book Here

Book Description
This 2-volume set includes extensive discussions of scattering techniques (light, neutron and X-ray) and related fluctuation and grating techniques that are at the forefront of this field. Most of the scattering techniques are Fourier space techniques. Recent advances have seen the development of powerful direct imaging methods such as atomic force microscopy and scanning probe microscopy. In addition, techniques that can be used to manipulate soft matter on the nanometer scale are also in rapid development. These include the scanning probe microscopy technique mentioned above as well as optical and magnetic tweezers.

Handbook of Materials Characterization

Handbook of Materials Characterization PDF Author: Surender Kumar Sharma
Publisher: Springer
ISBN: 3319929550
Category : Technology & Engineering
Languages : en
Pages : 612

Get Book Here

Book Description
This book focuses on the widely used experimental techniques available for the structural, morphological, and spectroscopic characterization of materials. Recent developments in a wide range of experimental techniques and their application to the quantification of materials properties are an essential side of this book. Moreover, it provides concise but thorough coverage of the practical and theoretical aspects of the analytical techniques used to characterize a wide variety of functional nanomaterials. The book provides an overview of widely used characterization techniques for a broad audience: from beginners and graduate students, to advanced specialists in both academia and industry.

Handbook of Food Structure Development

Handbook of Food Structure Development PDF Author: Fotis Spyropoulos
Publisher: Royal Society of Chemistry
ISBN: 178801216X
Category : Science
Languages : en
Pages : 516

Get Book Here

Book Description
The most useful properties of food, i.e. the ones that are detected through look, touch and taste, are a manifestation of the food’s structure. Studies about how this structure develops or can be manipulated during food production and processing are a vital part of research in food science. This book provides the status of research on food structure and how it develops through the interplay between processing routes and formulation elements. It covers food structure development across a range of food settings and consider how this alters in order to design food with specific functionalities and performance. Food structure has to be considered across a range of length scales and the book includes a section focusing on analytical and theoretical approaches that can be taken to analyse/characterise food structure from the nano- to the macro-scale. The book concludes by outlining the main challenges arising within the field and the opportunities that these create in terms of establishing or growing future research activities. Edited and written by world class contributors, this book brings the literature up-to-date by detailing how the technology and applications have moved on over the past 10 years. It serves as a reference for researchers in food science and chemistry, food processing and food texture and structure.

Modern Aspects of Small-Angle Scattering

Modern Aspects of Small-Angle Scattering PDF Author: H. Brumberger
Publisher: Springer
ISBN: 0792332512
Category : Technology & Engineering
Languages : en
Pages : 463

Get Book Here

Book Description
The technique of smal1-angle soattering (SAS) is now about sixty years o1d. Soon after the first observations of, a continuous, intense X-ray scattering near the primary beam from samp1es such as canbo:tt,bla:cks, it was recognized that this scattering arose from e1ectron density heterogeneities on a scale of severa! tens to severa! hundred times the wave1ength of the radiation used. By the time the classic monograph of Guinier and Foumet appeared in 1955, much of the basic theory and instrumentation had been developed, and applications to colloidal suspensions, macromolecular solutions inc1uding proteins and viruses, fibers, porous and finely divided solids, metallic alloys etc. numbered in the hundreds. Following severa! specialized meetings, the first international conference on small-ang1e X-ray scattering was helditi, Syracuse in 1965, marked by the presentation of new scattering theory for polydisperse systems, polymer coils and filaments, new instrumentation (the Bonse-Hart camera), and new applications to polymeric, biologica!, and metallic systems, to critica! phenomena and to catalysts. The second conference (Graz, 1970) no longer dealt exclusively with X ray scattering, but also inc1uded neutron small-angle scattering (SANS). SANS applications developed rapidly during this period, especially for studying synthetic and biologica! macromolecules, when the possibilities of exploiting scattering Iength density differences, created by selective deuteration, were recognized.

X-Ray Scattering of Soft Matter

X-Ray Scattering of Soft Matter PDF Author: Norbert Stribeck
Publisher: Springer Science & Business Media
ISBN: 3540698566
Category : Technology & Engineering
Languages : en
Pages : 251

Get Book Here

Book Description
This manual is a useful ready-reference guide to the analytical power of modern X-ray scattering in the field of soft matter. The author describes simple tools that can elucidate the mechanisms of structure evolution in the studied materials, and follows this up with a step-by-step guide to more advanced methods. Data analysis based on clear, unequivocal results is rendered simple and straightforward – with a stress on careful planning of experiments and adequate recording of all required data.