Simultaneous Production of High Purity Hydrogen and Carbon Dioxide from Syngas

Simultaneous Production of High Purity Hydrogen and Carbon Dioxide from Syngas PDF Author: Linda Vancil Denton
Publisher:
ISBN:
Category :
Languages : en
Pages : 328

Get Book Here

Book Description

Simultaneous Production of High Purity Hydrogen and Carbon Dioxide from Syngas

Simultaneous Production of High Purity Hydrogen and Carbon Dioxide from Syngas PDF Author: Linda Vancil Denton
Publisher:
ISBN:
Category :
Languages : en
Pages : 328

Get Book Here

Book Description


SIMULTANEOUS PRODUCTION OF HIGH-PURITY HYDROGEN AND SEQUESTRATION-READY CO2 FROM SYNGAS.

SIMULTANEOUS PRODUCTION OF HIGH-PURITY HYDROGEN AND SEQUESTRATION-READY CO2 FROM SYNGAS. PDF Author: Vladimir Zamansky
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
This final report summarizes the progress made on the program ''Simultaneous Production of High-Purity Hydrogen and Sequestration-Ready CO{sub 2} from Syngas (contract number DE-FG26-99FT40682)'', during October 2000 through September of 2003. GE Energy and Environmental Research (GE-EER) and Southern Illinois University (SIU) at Carbondale conducted the research work for this program. This program addresses improved methods to efficiently produce simultaneous streams of high-purity hydrogen and separated carbon dioxide from synthesis gas (syngas). The syngas may be produced through either gasification of coal or reforming of natural gas. The process of production of H{sub 2} and separated CO{sub 2} utilizes a dual-bed reactor and regenerator system. The reactor produces hydrogen and the regenerator produces separated CO{sub 2}. The dual-bed system can be operated under either a circulating fluidized-bed configuration or a cyclic fixed-bed configuration. Both configurations were evaluated in this project. The experimental effort was divided into lab-scale work at SIU and bench-scale work at GE-EER. Tests in a lab-scale fluidized bed system demonstrated the process for the conversion of syngas to high purity H{sub 2} and separated CO{sub 2}. The lab-scale system generated up to 95% H{sub 2} (on a dry basis). Extensive thermodynamic analysis of chemical reactions between the syngas and the fluidized solids determined an optimum range of temperature and pressure operation, where the extent of the undesirable reactions is minimum. The cycling of the process between hydrogen generation and oxygen regeneration has been demonstrated. The fluidized solids did not regenerate completely and the hydrogen purity in the reuse cycle dropped to 70% from 95% (on a dry basis). Changes in morphology and particle size may be the most dominant factor affecting the efficiency of the repeated cycling between hydrogen production and oxygen regeneration. The concept of simultaneous production of hydrogen and separated stream of CO{sub 2} was proved using a fixed bed 2 reactor system at GE-EER. This bench-scale cyclic fixed-bed reactor system designed to reform natural gas to syngas has been fabricated in another coordinated DOE project. This system was modified to reform natural gas to syngas and then convert syngas to H{sub 2} and separated CO{sub 2}. The system produced 85% hydrogen (dry basis).

Simultaneous Production of High-Purity Hydrogen and Sequestration-Ready CO2 from Syngas

Simultaneous Production of High-Purity Hydrogen and Sequestration-Ready CO2 from Syngas PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Two computer modules are being constructed to model a new process for syngas upgrading and purification. The first module simulates the physical processes occurring in a fluid bed reactor where both gas and solid compositions and flow rates vary significantly along the axis of the reactor. The second module simulates the chemistry and mass transfer between the gas and solid phases. Primitive forms of the two modules have been developed and exercised over a range of performance parameters. These early tests verify that the modules will need to be expanded to model the reactors as series of individual zones in order to attain satisfactory predictive performance.

The Production of Pure Hydrogen with Simultaneous Capture of Carbon Dioxide

The Production of Pure Hydrogen with Simultaneous Capture of Carbon Dioxide PDF Author: Christopher Bohn
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The need to stabilise or even reduce the production of anthropogenic CO2 makes the capture of CO2 during energy generation from carbonaceous fuels, e.g. coal or biomass, necessary for the future. For hydrogen, an environmentally-benign energy vector whose sole combustion product is water, to become a major energy source, it must be produced in an efficient, CO2-neutral manner. A process, which uses a packed bed of iron and its oxides, viz. Fe, Fe0:947O, Fe3O4 and Fe2O3, has been formulated to produce separate, pure streams of H2 and CO2. The process is exothermic and has the following stages:1. Reduction of Fe2O3 to Fe0:947O or Fe in syngas (CO + H2) from gasifying coal or biomass. This stage generates pure CO2 for sequestration, once the water has been condensed. 2. Subsequent oxidation of Fe or Fe0:947O to Fe3O4 using steam. This stage generatesH2 of sufficient purity for use in polymeric membrane fuel cells. 3. Further oxidation of Fe3O4 to Fe2O3 using air to return the oxide to step (1). It was shown that reduction to Fe0:947O in step (1) gave stable yields of H2 in step (2)after 40 cycles, near those predicted from reaction stoichiometry. By contrast, reduction to Fe, rather than Fe0:947O, in step (1) gave low levels of H2 in step (2) after just 10 cycles. This demonstrates that modifying the iron oxide is unnecessary unless reduction to Fe is performed. Wet-impregnation of Fe2O3 was performed with salts of Al, Cr and Mg or with tetraethylorthosilicate for Si to give loadings of 1-30 mol % of the additive element. The addition of Al stabilised the quantity of H2 produced when the sample was reduced to Fe. Using a sol-gel method, composite particles with diff erent mass ratios of Fe2O3 and Al2O3 were prepared. For reduction to Fe over 40 cycles, 40 wt. % Al2O3 was required to give stable conversions near 75 % of that expected from reaction stoichiometry. Prior to this research, it had been assumedthat the alumina acted as an inert support. However, this was shown to be incorrect since the formation of FeO. Al2O3 was quantitatively confirmed using X-ray diffraction. The presence of the compound, FeO. Al2O3, is significant since it reduces the loss in internal surface area butbinds reactive iron, two contradictory e ects for the production of H2. The production of separate streams of pure H2 and CO2 from solid fuels, lignite and subbituminous coal, was demonstrated. Pure H2 with [CO] ~

Hydrogen and Syngas Production and Purification Technologies

Hydrogen and Syngas Production and Purification Technologies PDF Author: Ke Liu
Publisher: John Wiley & Sons
ISBN: 0471719757
Category : Technology & Engineering
Languages : en
Pages : 572

Get Book Here

Book Description
Covers the timely topic of fuel cells and hydrogen-based energy from its fundamentals to practical applications Serves as a resource for practicing researchers and as a text in graduate-level programs Tackles crucial aspects in light of the new directions in the energy industry, in particular how to integrate fuel processing into contemporary systems like nuclear and gas power plants Includes homework-style problems

Simultaneous Water-gas Shift Reaction and Carbon Dioxide Separation for Direct Hydrogen Production from Synthesis Gas

Simultaneous Water-gas Shift Reaction and Carbon Dioxide Separation for Direct Hydrogen Production from Synthesis Gas PDF Author: Chun Han
Publisher:
ISBN:
Category : Hydrogen
Languages : en
Pages : 474

Get Book Here

Book Description


Catalysts for the Simultaneous Production of Syngas and Carbon Nanofilaments Via Catalytic Decomposition of Biogas

Catalysts for the Simultaneous Production of Syngas and Carbon Nanofilaments Via Catalytic Decomposition of Biogas PDF Author: Buthainah Ali Ali Al-Timimi
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 0

Get Book Here

Book Description
The possibility of alleviation of methane and carbon dioxide levels in the atmosphere are of major global interest. One of the alternatives that attracts much scientific attention is their chemical utilization, especially because both of these gases are components of the biogas. Thus, the rapid and extensive shale gas development makes them abundant raw materials. The development of an effective catalytic process that could be scaled-up for industrial purposes remains a great challenge for catalysis. As well, understanding of the mechanisms of molecular activation and the reaction pathways over active centers on heterogeneous catalysts needs to be advanced. It has been shown that biogas is a very interesting source of renewable energy. Because of its elevated methane content, biogas has excellent potential, as reflected in its year-over-year rise in production. This is because its manufacturing promotes the use of organic waste, prevents uncontrolled dumping and minimizes atmospheric methane and carbon dioxide emissions. Moreover, its use as an energy source is in some cases an alternative to fossil fuels and can help to minimize energy dependence. Another aspect of interest is that it can be used in situ, allowing agro-livestock farms or small industrial plants to achieve energy self-sufficiency.

HIGH-TEMPERATURE CO-ELECTROLYSIS OF H2O AND CO2 FOR SYNGAS PRODUCTION.

HIGH-TEMPERATURE CO-ELECTROLYSIS OF H2O AND CO2 FOR SYNGAS PRODUCTION. PDF Author: C. M. Stoots
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen content (an example is the Athabasca Oil Sands). Additionally, the higher contents of sulfur and nitrogen of these resources requires processes such as hydrotreating to meet environmental requirements. In the mean time, with the price of oil currently over $50 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas - hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. The syngas can then be used for synthetic fuel production. This program is a combination of experimental and computational activities. Since the solid oxide electrolyte material is a conductor of oxygen ions, CO can be produced by electrolyzing CO2 sequestered from some greenhouse gas-emitting process. Under certain conditions, however, CO can further electrolyze to produce carbon, which can then deposit on cell surfaces and reduce cell performance. The understanding of the co-electrolysis of steam and CO2 is also complicated by the competing water-gas shift reaction. Results of experiments and calculations to date of CO2 and CO2/H2O electrolysis will be presented and discussed. These will include electrolysis performance at various temperatures, gas mixtures, and electrical settings. Product gas compositions, as measured via a gas analyser, and their relationship to conversion efficiencies will be presented. These measurements will be compared to predictions obtained from chemical equilibrium computer codes. Better understanding of the feasibility of producing syngas using high-temperature electrolysis will initiate the systematic investigation of nuclear-powered synfuel production as a bridge to the future hydrogen economy and ultimate independence from foreign energy resources.

Synthesis Gas

Synthesis Gas PDF Author: James G. Speight
Publisher: John Wiley & Sons
ISBN: 1119707722
Category : Science
Languages : en
Pages : 512

Get Book Here

Book Description
As a follow-up to the Handbook of Gasification Technology, also from Wiley-Scrivener, Synthesis Gas goes into more depth on how the products from this important technology can reduce our global carbon footprint and lead the United States, and other countries, toward energy independence. The environmental benefits are very high, and, along with carbon capture and renewable fuels, synthesis gas (or syngas) is a huge step toward environmental sustainability. Synthesis gas is one of the most important advancements that has ever occurred in energy production. Using this technology, for example, coal, biomass, waste products, or a combination of two or more of these can be gasified into a product that has roughly half the carbon footprint of coal alone. Used on a massive scale, just think of the potential for reducing carbon emissions! Synthesis Gas covers all aspects of the technology, from the chemistry, processes, and production, to the products, feedstocks, and even safety in the plant. Whether a veteran engineer or scientist using it as a reference or a professor using it as a textbook, this outstanding new volume is a must-have for any library.

Advances in Synthesis Gas: Methods, Technologies and Applications

Advances in Synthesis Gas: Methods, Technologies and Applications PDF Author: Mohammad Reza Rahimpour
Publisher: Elsevier
ISBN: 032398519X
Category : Technology & Engineering
Languages : en
Pages : 476

Get Book Here

Book Description
Advances in Synthesis Gas: Methods, Technologies and Applications: Syngas Purification and Separation considers different common and novel processes for the purification of produced syngas, such as absorption, adsorption, membrane, cryogenic distillation and particulate separation technologies in addition to thermal and oxidative processes for tar removal. The role of various catalysts or materials in absorption, adsorption and membrane processes are discussed in separate chapters to address each in more detail. - Introduces various adsorption and absorption techniques for purifying syngas - Describes syngas purification by various membranes - Discusses novel technologies for syngas purification