Author: Laurence Latu-Romain
Publisher: John Wiley & Sons
ISBN: 1848217978
Category : Technology & Engineering
Languages : en
Pages : 148
Book Description
Dedicated to SiC-based 1D nanostructures, this book explains the properties and different growth methods of these nanostructures. It details carburization of silicon nanowires, a growth process for obtaining original Si-SiC core-shell nanowires and SiC nanotubes of high crystalline quality, thanks to the control of the siliconout-diffusion. The potential applications of these particular nano-objects is also discussed, with regards to their eventual integration in biology, energy and electronics.
Silicon Carbide One-dimensional Nanostructures
Author: Laurence Latu-Romain
Publisher: John Wiley & Sons
ISBN: 1848217978
Category : Technology & Engineering
Languages : en
Pages : 148
Book Description
Dedicated to SiC-based 1D nanostructures, this book explains the properties and different growth methods of these nanostructures. It details carburization of silicon nanowires, a growth process for obtaining original Si-SiC core-shell nanowires and SiC nanotubes of high crystalline quality, thanks to the control of the siliconout-diffusion. The potential applications of these particular nano-objects is also discussed, with regards to their eventual integration in biology, energy and electronics.
Publisher: John Wiley & Sons
ISBN: 1848217978
Category : Technology & Engineering
Languages : en
Pages : 148
Book Description
Dedicated to SiC-based 1D nanostructures, this book explains the properties and different growth methods of these nanostructures. It details carburization of silicon nanowires, a growth process for obtaining original Si-SiC core-shell nanowires and SiC nanotubes of high crystalline quality, thanks to the control of the siliconout-diffusion. The potential applications of these particular nano-objects is also discussed, with regards to their eventual integration in biology, energy and electronics.
One-Dimensional Nanostructures
Author: Zhiming M Wang
Publisher: Springer Science & Business Media
ISBN: 0387741321
Category : Technology & Engineering
Languages : en
Pages : 335
Book Description
One-dimensional (1D) nanostructures, including nanowires, nanotubes and quantum wires, have been regarded as the most promising building blocks for nanoscale electronic and optoelectronic devices. This book presents exciting, state-of-the-art developments in synthesis and properties of 1D nanostructures with many kinds of morphologies and compositions as well as their considerable impact on spintronics, information storage, and the design of field-effect transistors.
Publisher: Springer Science & Business Media
ISBN: 0387741321
Category : Technology & Engineering
Languages : en
Pages : 335
Book Description
One-dimensional (1D) nanostructures, including nanowires, nanotubes and quantum wires, have been regarded as the most promising building blocks for nanoscale electronic and optoelectronic devices. This book presents exciting, state-of-the-art developments in synthesis and properties of 1D nanostructures with many kinds of morphologies and compositions as well as their considerable impact on spintronics, information storage, and the design of field-effect transistors.
Silicon Carbide Nanostructures
Author: Jiyang Fan
Publisher: Springer
ISBN: 3319087266
Category : Technology & Engineering
Languages : en
Pages : 336
Book Description
This book brings together the most up-to-date information on the fabrication techniques, properties, and potential applications of low dimensional silicon carbide (SiC) nanostructures such as nanocrystallites, nanowires, nanotubes, and nanostructured films. It also summarizes the tremendous achievements acquired during the past three decades involving structural, electronic, and optical properties of bulk silicon carbide crystals. SiC nanostructures exhibit a range of fascinating and industrially important properties, such as diverse polytypes, stability of interband and defect-related green to blue luminescence, inertness to chemical surroundings, and good biocompatibility. These properties have generated an increasing interest in the materials, which have great potential in a variety of applications across the fields of nanoelectronics, optoelectronics, electron field emission, sensing, quantum information, energy conversion and storage, biomedical engineering, and medicine. SiC is also a most promising substitute for silicon in high power, high temperature, and high frequency microelectronic devices. Recent breakthrough pertaining to the synthesis of ultra-high quality SiC single-crystals will bring the materials closer to real applications. Silicon Carbide Nanostructures: Fabrication, Structure, and Properties provides a unique reference book for researchers and graduate students in this emerging field. It is intended for materials scientists, physicists, chemists, and engineers in microelectronics, optoelectronics, and biomedical engineering.
Publisher: Springer
ISBN: 3319087266
Category : Technology & Engineering
Languages : en
Pages : 336
Book Description
This book brings together the most up-to-date information on the fabrication techniques, properties, and potential applications of low dimensional silicon carbide (SiC) nanostructures such as nanocrystallites, nanowires, nanotubes, and nanostructured films. It also summarizes the tremendous achievements acquired during the past three decades involving structural, electronic, and optical properties of bulk silicon carbide crystals. SiC nanostructures exhibit a range of fascinating and industrially important properties, such as diverse polytypes, stability of interband and defect-related green to blue luminescence, inertness to chemical surroundings, and good biocompatibility. These properties have generated an increasing interest in the materials, which have great potential in a variety of applications across the fields of nanoelectronics, optoelectronics, electron field emission, sensing, quantum information, energy conversion and storage, biomedical engineering, and medicine. SiC is also a most promising substitute for silicon in high power, high temperature, and high frequency microelectronic devices. Recent breakthrough pertaining to the synthesis of ultra-high quality SiC single-crystals will bring the materials closer to real applications. Silicon Carbide Nanostructures: Fabrication, Structure, and Properties provides a unique reference book for researchers and graduate students in this emerging field. It is intended for materials scientists, physicists, chemists, and engineers in microelectronics, optoelectronics, and biomedical engineering.
Nanowire Electronics
Author: Guozhen Shen
Publisher: Springer
ISBN: 9811323674
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
This book gives a comprehensive overview of recent advances in developing nanowires for building various kinds of electronic devices. Specifically the applications of nanowires in detectors, sensors, circuits, energy storage and conversion, etc., are reviewed in detail by the experts in this field. Growth methods of different kinds of nanowires are also covered when discussing the electronic applications. Through discussing these cutting edge researches, the future directions of nanowire electronics are identified.
Publisher: Springer
ISBN: 9811323674
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
This book gives a comprehensive overview of recent advances in developing nanowires for building various kinds of electronic devices. Specifically the applications of nanowires in detectors, sensors, circuits, energy storage and conversion, etc., are reviewed in detail by the experts in this field. Growth methods of different kinds of nanowires are also covered when discussing the electronic applications. Through discussing these cutting edge researches, the future directions of nanowire electronics are identified.
Silicon Carbide Biotechnology
Author: Stephen E. Saddow
Publisher: Elsevier
ISBN: 0128030054
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, Second Edition, provides the latest information on this wide-band-gap semiconductor material that the body does not reject as a foreign (i.e., not organic) material and its potential to further advance biomedical applications. SiC devices offer high power densities and low energy losses, enabling lighter, more compact, and higher efficiency products for biocompatible and long-term in vivo applications, including heart stent coatings, bone implant scaffolds, neurological implants and sensors, glucose sensors, brain-machine-interface devices, smart bone implants, and organ implants. This book provides the materials and biomedical engineering communities with a seminal reference book on SiC for developing technology, and is a resource for practitioners eager to identify and implement advanced engineering solutions to their everyday medical problems for which they currently lack long-term, cost-effective solutions. - Discusses the properties, processing, characterization, and application of silicon carbide biomedical materials and related technology - Assesses literature, patents, and FDA approvals for clinical trials, enabling rapid assimilation of data from current disparate sources and promoting the transition from technology R&D, to clinical trials - Includes more on applications and devices, such as SiC nanowires, biofunctionalized devices, micro-electrode arrays, heart stent/cardiovascular coatings, and continuous glucose sensors, in this new edition
Publisher: Elsevier
ISBN: 0128030054
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, Second Edition, provides the latest information on this wide-band-gap semiconductor material that the body does not reject as a foreign (i.e., not organic) material and its potential to further advance biomedical applications. SiC devices offer high power densities and low energy losses, enabling lighter, more compact, and higher efficiency products for biocompatible and long-term in vivo applications, including heart stent coatings, bone implant scaffolds, neurological implants and sensors, glucose sensors, brain-machine-interface devices, smart bone implants, and organ implants. This book provides the materials and biomedical engineering communities with a seminal reference book on SiC for developing technology, and is a resource for practitioners eager to identify and implement advanced engineering solutions to their everyday medical problems for which they currently lack long-term, cost-effective solutions. - Discusses the properties, processing, characterization, and application of silicon carbide biomedical materials and related technology - Assesses literature, patents, and FDA approvals for clinical trials, enabling rapid assimilation of data from current disparate sources and promoting the transition from technology R&D, to clinical trials - Includes more on applications and devices, such as SiC nanowires, biofunctionalized devices, micro-electrode arrays, heart stent/cardiovascular coatings, and continuous glucose sensors, in this new edition
Silicon-based Nanomaterials
Author: Handong Li
Publisher: Springer Science & Business Media
ISBN: 1461481694
Category : Technology & Engineering
Languages : en
Pages : 414
Book Description
A variety of nanomaterials have excellent optoelectronic and electronic properties for novel device applications. At the same time, and with advances in silicon integrated circuit (IC) techniques, compatible Si-based nanomaterials hold promise of applying the advantages of nanomaterials to the conventional IC industry. This book focuses not only on silicon nanomaterials, but also summarizes up-to-date developments in the integration of non-silicon nanomaterials on silicon. The book showcases the work of leading researchers from around the world who address such key questions as: Which silicon nanomaterials can give the desired optical, electrical, and structural properties, and how are they prepared? What nanomaterials can be integrated on to a silicon substrate and how is this accomplished? What Si-based nanomaterials may bring a breakthrough in this field? These questions address the practical issues associated with the development of nanomaterial-based devices in applications areas such as solar cells, luminous devices for optical communication (detectors, lasers), and high mobility transistors. Investigation of silicon-based nanostructures is of great importance to make full use of nanomaterials for device applications. Readers will receive a comprehensive view of Si-based nanomaterials, which will hopefully stimulate interest in developing novel nanostructures or techniques to satisfy the requirements of high performance device applications. The goal is to make nanomaterials the main constituents of the high performance devices of the future.
Publisher: Springer Science & Business Media
ISBN: 1461481694
Category : Technology & Engineering
Languages : en
Pages : 414
Book Description
A variety of nanomaterials have excellent optoelectronic and electronic properties for novel device applications. At the same time, and with advances in silicon integrated circuit (IC) techniques, compatible Si-based nanomaterials hold promise of applying the advantages of nanomaterials to the conventional IC industry. This book focuses not only on silicon nanomaterials, but also summarizes up-to-date developments in the integration of non-silicon nanomaterials on silicon. The book showcases the work of leading researchers from around the world who address such key questions as: Which silicon nanomaterials can give the desired optical, electrical, and structural properties, and how are they prepared? What nanomaterials can be integrated on to a silicon substrate and how is this accomplished? What Si-based nanomaterials may bring a breakthrough in this field? These questions address the practical issues associated with the development of nanomaterial-based devices in applications areas such as solar cells, luminous devices for optical communication (detectors, lasers), and high mobility transistors. Investigation of silicon-based nanostructures is of great importance to make full use of nanomaterials for device applications. Readers will receive a comprehensive view of Si-based nanomaterials, which will hopefully stimulate interest in developing novel nanostructures or techniques to satisfy the requirements of high performance device applications. The goal is to make nanomaterials the main constituents of the high performance devices of the future.
Carbon Nanomaterials Sourcebook, Two-Volume Set
Author: Klaus D. Sattler
Publisher: CRC Press
ISBN: 1482282771
Category : Science
Languages : en
Pages : 1384
Book Description
This two-volume sourcebook is the most comprehensive reference for carbon nanomaterials, bringing together the physics, chemistry, materials science, molecular biology and engineering of all carbon nanomaterial types that are important in electronics, energy, biomedical and environmental applications. Each chapter addresses the fundamental properties, growth mechanisms, processing and functionalization of a particular nanocarbon. The first volume covers graphene, fullerenes, nanotubes and nanodiamonds. The second volume focuses on nanoparticles, nanocapsules, nanofibers, nanoporous structures and nanocomposites.
Publisher: CRC Press
ISBN: 1482282771
Category : Science
Languages : en
Pages : 1384
Book Description
This two-volume sourcebook is the most comprehensive reference for carbon nanomaterials, bringing together the physics, chemistry, materials science, molecular biology and engineering of all carbon nanomaterial types that are important in electronics, energy, biomedical and environmental applications. Each chapter addresses the fundamental properties, growth mechanisms, processing and functionalization of a particular nanocarbon. The first volume covers graphene, fullerenes, nanotubes and nanodiamonds. The second volume focuses on nanoparticles, nanocapsules, nanofibers, nanoporous structures and nanocomposites.
Carbon Nanomaterials Sourcebook
Author: Klaus D. Sattler
Publisher: CRC Press
ISBN: 1315362449
Category : Science
Languages : en
Pages : 754
Book Description
The Carbon Nanomaterials Sourcebook contains extensive, interdisciplinary coverage of carbon nanomaterials, encompassing the full scope of the field—from physics, chemistry, and materials science to molecular biology, engineering, and medicine—in two comprehensive volumes. Written in a tutorial style, this second volume of the sourcebook: Focuses on nanoparticles, nanocapsules, nanofibers, nanoporous structures, and nanocomposites Describes the fundamental properties, growth mechanisms, and processing of each nanomaterial discussed Explores functionalization for electronic, energy, biomedical, and environmental applications Showcases materials with exceptional properties, synthesis methods, large-scale production techniques, and application prospects Provides the tools necessary for understanding current and future technology developments, including important equations, tables, and graphs Each chapter is dedicated to a different type of carbon nanomaterial and addresses three main areas: formation, properties, and applications. This setup allows for quick and easy search, making the Carbon Nanomaterials Sourcebook: Nanoparticles, Nanocapsules, Nanofibers, Nanoporous Structures, and Nanocomposites a must-have reference for scientists and engineers.
Publisher: CRC Press
ISBN: 1315362449
Category : Science
Languages : en
Pages : 754
Book Description
The Carbon Nanomaterials Sourcebook contains extensive, interdisciplinary coverage of carbon nanomaterials, encompassing the full scope of the field—from physics, chemistry, and materials science to molecular biology, engineering, and medicine—in two comprehensive volumes. Written in a tutorial style, this second volume of the sourcebook: Focuses on nanoparticles, nanocapsules, nanofibers, nanoporous structures, and nanocomposites Describes the fundamental properties, growth mechanisms, and processing of each nanomaterial discussed Explores functionalization for electronic, energy, biomedical, and environmental applications Showcases materials with exceptional properties, synthesis methods, large-scale production techniques, and application prospects Provides the tools necessary for understanding current and future technology developments, including important equations, tables, and graphs Each chapter is dedicated to a different type of carbon nanomaterial and addresses three main areas: formation, properties, and applications. This setup allows for quick and easy search, making the Carbon Nanomaterials Sourcebook: Nanoparticles, Nanocapsules, Nanofibers, Nanoporous Structures, and Nanocomposites a must-have reference for scientists and engineers.
Nanocarbons for Electroanalysis
Author: Sabine Szunerits
Publisher: John Wiley & Sons
ISBN: 1119243904
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
A comprehensive look at the most widely employed carbon-based electrode materials and the numerous electroanalytical applications associated with them. A valuable reference for the emerging age of carbon-based electronics and electrochemistry, this book discusses diverse applications for nanocarbon materials in electrochemical sensing. It highlights the advantages and disadvantages of the different nanocarbon materials currently used for electroanalysis, covering the electrochemical sensing of small-sized molecules, such as metal ions and endocrine disrupting chemicals (EDCs), as well as large biomolecules such as DNA, RNA, enzymes and proteins. A comprehensive look at state-of-the-art applications for nanocarbon materials in electrochemical sensors Emphasizes the relationship between the carbon structures and surface chemistry, and electrochemical performance Covers a wide array of carbon nanomaterials, including nanocarbon films, carbon nanofibers, graphene, diamond nanostructures, and carbon-dots Edited by internationally renowned experts in the field with contributions from researchers at the cutting edge of nanocarbon electroanalysis Nanocarbons for Electroanalysis is a valuable working resource for all chemists and materials scientists working on carbon based-nanomaterials and electrochemical sensors. It also belongs on the reference shelves of academic researchers and industrial scientists in the fields of nanochemistry and nanomaterials, materials chemistry, material science, electrochemistry, analytical chemistry, physical chemistry, and biochemistry.
Publisher: John Wiley & Sons
ISBN: 1119243904
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
A comprehensive look at the most widely employed carbon-based electrode materials and the numerous electroanalytical applications associated with them. A valuable reference for the emerging age of carbon-based electronics and electrochemistry, this book discusses diverse applications for nanocarbon materials in electrochemical sensing. It highlights the advantages and disadvantages of the different nanocarbon materials currently used for electroanalysis, covering the electrochemical sensing of small-sized molecules, such as metal ions and endocrine disrupting chemicals (EDCs), as well as large biomolecules such as DNA, RNA, enzymes and proteins. A comprehensive look at state-of-the-art applications for nanocarbon materials in electrochemical sensors Emphasizes the relationship between the carbon structures and surface chemistry, and electrochemical performance Covers a wide array of carbon nanomaterials, including nanocarbon films, carbon nanofibers, graphene, diamond nanostructures, and carbon-dots Edited by internationally renowned experts in the field with contributions from researchers at the cutting edge of nanocarbon electroanalysis Nanocarbons for Electroanalysis is a valuable working resource for all chemists and materials scientists working on carbon based-nanomaterials and electrochemical sensors. It also belongs on the reference shelves of academic researchers and industrial scientists in the fields of nanochemistry and nanomaterials, materials chemistry, material science, electrochemistry, analytical chemistry, physical chemistry, and biochemistry.
Advances in High Temperature Ceramic Matrix Composites and Materials for Sustainable Development
Author: Mrityunjay Singh
Publisher: John Wiley & Sons
ISBN: 1119407532
Category : Technology & Engineering
Languages : en
Pages : 590
Book Description
Global population growth and tremendous economic development has brought us to the crossroads of long-term sustainability and risk of irreversible changes in the ecosystem. Energy efficient and ecofriendly technologies and systems are critically needed for further growth and sustainable development. While ceramic matrix composites were originally developed to overcome problems associated with the brittle nature of monolithic ceramics, today the composites can be tailored for customized purposes and offer energy efficient and ecofriendly applications, including aerospace, ground transportation, and power generation systems. The 9th International Conference on High Temperature Ceramic Matrix Composites (HTCMC 9) was held in Toronto, Canada, June 26-30, 2016 to discuss challenges and opportunities in manufacturing, commercialization, and applications for these important material systems. The Global Forum on Advanced Materials and Technologies for Sustainable Development (GFMAT 2016) was held in conjunction with HTCMC 9 to address key issues, challenges, and opportunities in a variety of advanced materials and technologies that are critically needed for sustainable societal development. This Ceramic Transactions volume contains a collection of peer reviewed papers from the 16 below symposia that were submitted from these two conferences Design and Development of Advanced Ceramic Fibers, Interfaces, and Interphases in Composites- A Symposium in Honor of Professor Roger Naslain Innovative Design, Advanced Processing, and Manufacturing Technologies Materials for Extreme Environments: Ultrahigh Temperature Ceramics (UHTCs) and Nano-laminated Ternary Carbides and Nitrides (MAX Phases) Polymer Derived Ceramics and Composites Advanced Thermal and Environmental Barrier Coatings: Processing, Properties, and Applications Thermomechanical Behavior and Performance of Composites Ceramic Integration and Additive Manufacturing Technologies Component Testing and Evaluation of Composites CMC Applications in Transportation and Industrial Systems Powder Processing Innovation and Technologies for Advanced Materials and Sustainable Development Novel, Green, and Strategic Processing and Manufacturing Technologies Ceramics for Sustainable Infrastructure: Geopolymers and Sustainable Composites Advanced Materials, Technologies, and Devices for Electro-optical and Medical Applications Porous Ceramics for Advanced Applications Through Innovative Processing Multifunctional Coatings for Sustainable Energy and Environmental Applications
Publisher: John Wiley & Sons
ISBN: 1119407532
Category : Technology & Engineering
Languages : en
Pages : 590
Book Description
Global population growth and tremendous economic development has brought us to the crossroads of long-term sustainability and risk of irreversible changes in the ecosystem. Energy efficient and ecofriendly technologies and systems are critically needed for further growth and sustainable development. While ceramic matrix composites were originally developed to overcome problems associated with the brittle nature of monolithic ceramics, today the composites can be tailored for customized purposes and offer energy efficient and ecofriendly applications, including aerospace, ground transportation, and power generation systems. The 9th International Conference on High Temperature Ceramic Matrix Composites (HTCMC 9) was held in Toronto, Canada, June 26-30, 2016 to discuss challenges and opportunities in manufacturing, commercialization, and applications for these important material systems. The Global Forum on Advanced Materials and Technologies for Sustainable Development (GFMAT 2016) was held in conjunction with HTCMC 9 to address key issues, challenges, and opportunities in a variety of advanced materials and technologies that are critically needed for sustainable societal development. This Ceramic Transactions volume contains a collection of peer reviewed papers from the 16 below symposia that were submitted from these two conferences Design and Development of Advanced Ceramic Fibers, Interfaces, and Interphases in Composites- A Symposium in Honor of Professor Roger Naslain Innovative Design, Advanced Processing, and Manufacturing Technologies Materials for Extreme Environments: Ultrahigh Temperature Ceramics (UHTCs) and Nano-laminated Ternary Carbides and Nitrides (MAX Phases) Polymer Derived Ceramics and Composites Advanced Thermal and Environmental Barrier Coatings: Processing, Properties, and Applications Thermomechanical Behavior and Performance of Composites Ceramic Integration and Additive Manufacturing Technologies Component Testing and Evaluation of Composites CMC Applications in Transportation and Industrial Systems Powder Processing Innovation and Technologies for Advanced Materials and Sustainable Development Novel, Green, and Strategic Processing and Manufacturing Technologies Ceramics for Sustainable Infrastructure: Geopolymers and Sustainable Composites Advanced Materials, Technologies, and Devices for Electro-optical and Medical Applications Porous Ceramics for Advanced Applications Through Innovative Processing Multifunctional Coatings for Sustainable Energy and Environmental Applications