Author: Alan Holden
Publisher: Courier Corporation
ISBN: 9780486268514
Category : Mathematics
Languages : en
Pages : 218
Book Description
Explains structure of nine regular solids and many semiregular solids and demonstrates how they can be used to explain mathematics. Instructions for cardboard models. Over 300 illustrations. 1971 edition.
Shapes, Space, and Symmetry
Author: Alan Holden
Publisher: Courier Corporation
ISBN: 9780486268514
Category : Mathematics
Languages : en
Pages : 218
Book Description
Explains structure of nine regular solids and many semiregular solids and demonstrates how they can be used to explain mathematics. Instructions for cardboard models. Over 300 illustrations. 1971 edition.
Publisher: Courier Corporation
ISBN: 9780486268514
Category : Mathematics
Languages : en
Pages : 218
Book Description
Explains structure of nine regular solids and many semiregular solids and demonstrates how they can be used to explain mathematics. Instructions for cardboard models. Over 300 illustrations. 1971 edition.
Symmetry, Shape and Space
Author: L.Christine Kinsey
Publisher: Springer Science & Business Media
ISBN: 9781930190092
Category : Mathematics
Languages : en
Pages : 524
Book Description
This book will appeal to at least three groups of readers: prospective high school teachers, liberal arts students, and parents whose children are studying high school or college math. It is modern in its selection of topics, and in the learning models used by the authors. The book covers some exciting but non-traditional topics from the subject area of geometry. It is also intended for undergraduates and tries to engage their interest in mathematics. Many innovative pedagogical modes are used throughout.
Publisher: Springer Science & Business Media
ISBN: 9781930190092
Category : Mathematics
Languages : en
Pages : 524
Book Description
This book will appeal to at least three groups of readers: prospective high school teachers, liberal arts students, and parents whose children are studying high school or college math. It is modern in its selection of topics, and in the learning models used by the authors. The book covers some exciting but non-traditional topics from the subject area of geometry. It is also intended for undergraduates and tries to engage their interest in mathematics. Many innovative pedagogical modes are used throughout.
The Universe in the Rearview Mirror
Author: Dave Goldberg
Publisher: Penguin
ISBN: 0142181048
Category : Science
Languages : en
Pages : 354
Book Description
“A great read… Goldberg is an excellent guide.”—Mario Livio, bestselling author of The Golden Ratio Physicist Dave Goldberg speeds across space, time and everything in between showing that our elegant universe—from the Higgs boson to antimatter to the most massive group of galaxies—is shaped by hidden symmetries that have driven all our recent discoveries about the universe and all the ones to come. Why is the sky dark at night? If there is anti-matter, can there be anti-people? Why are past, present, and future our only options? Saluting the brilliant but unsung female mathematician Emmy Noether as well as other giants of physics, Goldberg answers these questions and more, exuberantly demonstrating that symmetry is the big idea—and the key to what lies ahead.
Publisher: Penguin
ISBN: 0142181048
Category : Science
Languages : en
Pages : 354
Book Description
“A great read… Goldberg is an excellent guide.”—Mario Livio, bestselling author of The Golden Ratio Physicist Dave Goldberg speeds across space, time and everything in between showing that our elegant universe—from the Higgs boson to antimatter to the most massive group of galaxies—is shaped by hidden symmetries that have driven all our recent discoveries about the universe and all the ones to come. Why is the sky dark at night? If there is anti-matter, can there be anti-people? Why are past, present, and future our only options? Saluting the brilliant but unsung female mathematician Emmy Noether as well as other giants of physics, Goldberg answers these questions and more, exuberantly demonstrating that symmetry is the big idea—and the key to what lies ahead.
Number, Shape, & Symmetry
Author: Diane L. Herrmann
Publisher: CRC Press
ISBN: 1466554649
Category : Mathematics
Languages : en
Pages : 446
Book Description
Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.
Publisher: CRC Press
ISBN: 1466554649
Category : Mathematics
Languages : en
Pages : 446
Book Description
Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.
The Shape of Space
Author: Jeffrey R. Weeks
Publisher: CRC Press
ISBN: 1135542651
Category : Mathematics
Languages : en
Pages : 248
Book Description
Maintaining the standard of excellence set by the previous edition, this textbook covers the basic geometry of two- and three-dimensional spaces Written by a master expositor, leading researcher in the field, and MacArthur Fellow, it includes experiments to determine the true shape of the universe and contains illustrated examples and engaging exercises that teach mind-expanding ideas in an intuitive and informal way. Bridging the gap from geometry to the latest work in observational cosmology, the book illustrates the connection between geometry and the behavior of the physical universe and explains how radiation remaining from the big bang may reveal the actual shape of the universe.
Publisher: CRC Press
ISBN: 1135542651
Category : Mathematics
Languages : en
Pages : 248
Book Description
Maintaining the standard of excellence set by the previous edition, this textbook covers the basic geometry of two- and three-dimensional spaces Written by a master expositor, leading researcher in the field, and MacArthur Fellow, it includes experiments to determine the true shape of the universe and contains illustrated examples and engaging exercises that teach mind-expanding ideas in an intuitive and informal way. Bridging the gap from geometry to the latest work in observational cosmology, the book illustrates the connection between geometry and the behavior of the physical universe and explains how radiation remaining from the big bang may reveal the actual shape of the universe.
The Second Kind of Impossible
Author: Paul Steinhardt
Publisher: Simon & Schuster
ISBN: 147672993X
Category : Science
Languages : en
Pages : 400
Book Description
*Shortlisted for the 2019 Royal Society Insight Investment Science Book Prize* One of the most fascinating scientific detective stories of the last fifty years, an exciting quest for a new form of matter. “A riveting tale of derring-do” (Nature), this book reads like James Gleick’s Chaos combined with an Indiana Jones adventure. When leading Princeton physicist Paul Steinhardt began working in the 1980s, scientists thought they knew all the conceivable forms of matter. The Second Kind of Impossible is the story of Steinhardt’s thirty-five-year-long quest to challenge conventional wisdom. It begins with a curious geometric pattern that inspires two theoretical physicists to propose a radically new type of matter—one that raises the possibility of new materials with never before seen properties, but that violates laws set in stone for centuries. Steinhardt dubs this new form of matter “quasicrystal.” The rest of the scientific community calls it simply impossible. The Second Kind of Impossible captures Steinhardt’s scientific odyssey as it unfolds over decades, first to prove viability, and then to pursue his wildest conjecture—that nature made quasicrystals long before humans discovered them. Along the way, his team encounters clandestine collectors, corrupt scientists, secret diaries, international smugglers, and KGB agents. Their quest culminates in a daring expedition to a distant corner of the Earth, in pursuit of tiny fragments of a meteorite forged at the birth of the solar system. Steinhardt’s discoveries chart a new direction in science. They not only change our ideas about patterns and matter, but also reveal new truths about the processes that shaped our solar system. The underlying science is important, simple, and beautiful—and Steinhardt’s firsthand account is “packed with discovery, disappointment, exhilaration, and persistence...This book is a front-row seat to history as it is made” (Nature).
Publisher: Simon & Schuster
ISBN: 147672993X
Category : Science
Languages : en
Pages : 400
Book Description
*Shortlisted for the 2019 Royal Society Insight Investment Science Book Prize* One of the most fascinating scientific detective stories of the last fifty years, an exciting quest for a new form of matter. “A riveting tale of derring-do” (Nature), this book reads like James Gleick’s Chaos combined with an Indiana Jones adventure. When leading Princeton physicist Paul Steinhardt began working in the 1980s, scientists thought they knew all the conceivable forms of matter. The Second Kind of Impossible is the story of Steinhardt’s thirty-five-year-long quest to challenge conventional wisdom. It begins with a curious geometric pattern that inspires two theoretical physicists to propose a radically new type of matter—one that raises the possibility of new materials with never before seen properties, but that violates laws set in stone for centuries. Steinhardt dubs this new form of matter “quasicrystal.” The rest of the scientific community calls it simply impossible. The Second Kind of Impossible captures Steinhardt’s scientific odyssey as it unfolds over decades, first to prove viability, and then to pursue his wildest conjecture—that nature made quasicrystals long before humans discovered them. Along the way, his team encounters clandestine collectors, corrupt scientists, secret diaries, international smugglers, and KGB agents. Their quest culminates in a daring expedition to a distant corner of the Earth, in pursuit of tiny fragments of a meteorite forged at the birth of the solar system. Steinhardt’s discoveries chart a new direction in science. They not only change our ideas about patterns and matter, but also reveal new truths about the processes that shaped our solar system. The underlying science is important, simple, and beautiful—and Steinhardt’s firsthand account is “packed with discovery, disappointment, exhilaration, and persistence...This book is a front-row seat to history as it is made” (Nature).
The Symmetries of Things
Author: John H. Conway
Publisher: CRC Press
ISBN: 1439864896
Category : Mathematics
Languages : en
Pages : 442
Book Description
Start with a single shape. Repeat it in some way—translation, reflection over a line, rotation around a point—and you have created symmetry. Symmetry is a fundamental phenomenon in art, science, and nature that has been captured, described, and analyzed using mathematical concepts for a long time. Inspired by the geometric intuition of Bill Thurston and empowered by his own analytical skills, John Conway, with his coauthors, has developed a comprehensive mathematical theory of symmetry that allows the description and classification of symmetries in numerous geometric environments. This richly and compellingly illustrated book addresses the phenomenological, analytical, and mathematical aspects of symmetry on three levels that build on one another and will speak to interested lay people, artists, working mathematicians, and researchers.
Publisher: CRC Press
ISBN: 1439864896
Category : Mathematics
Languages : en
Pages : 442
Book Description
Start with a single shape. Repeat it in some way—translation, reflection over a line, rotation around a point—and you have created symmetry. Symmetry is a fundamental phenomenon in art, science, and nature that has been captured, described, and analyzed using mathematical concepts for a long time. Inspired by the geometric intuition of Bill Thurston and empowered by his own analytical skills, John Conway, with his coauthors, has developed a comprehensive mathematical theory of symmetry that allows the description and classification of symmetries in numerous geometric environments. This richly and compellingly illustrated book addresses the phenomenological, analytical, and mathematical aspects of symmetry on three levels that build on one another and will speak to interested lay people, artists, working mathematicians, and researchers.
Groups and Symmetry: A Guide to Discovering Mathematics
Author: David W. Farmer
Publisher: American Mathematical Soc.
ISBN: 0821804502
Category : Mathematics
Languages : en
Pages : 112
Book Description
Mathematics is discovered by looking at examples, noticing patterns, making conjectures, and testing those conjectures. Once discovered, the final results get organized and put in textbooks. The details and the excitement of the discovery are lost. This book introduces the reader to the excitement of the original discovery. By means of a wide variety of tasks, readers are led to find interesting examples, notice patterns, devise rules to explain the patterns, and discover mathematics for themselves. The subject studied here is the mathematics behind the idea of symmetry, but the methods and ideas apply to all of mathematics. The only prerequisites are enthusiasm and a knowledge of basic high-school math. The book is only a guide. It will start you off in the right direction and bring you back if you stray too far. The excitement and the discovery are left to you.
Publisher: American Mathematical Soc.
ISBN: 0821804502
Category : Mathematics
Languages : en
Pages : 112
Book Description
Mathematics is discovered by looking at examples, noticing patterns, making conjectures, and testing those conjectures. Once discovered, the final results get organized and put in textbooks. The details and the excitement of the discovery are lost. This book introduces the reader to the excitement of the original discovery. By means of a wide variety of tasks, readers are led to find interesting examples, notice patterns, devise rules to explain the patterns, and discover mathematics for themselves. The subject studied here is the mathematics behind the idea of symmetry, but the methods and ideas apply to all of mathematics. The only prerequisites are enthusiasm and a knowledge of basic high-school math. The book is only a guide. It will start you off in the right direction and bring you back if you stray too far. The excitement and the discovery are left to you.
The Shape of Inner Space
Author: Shing-Tung Yau
Publisher: Il Saggiatore
ISBN: 0465020232
Category : Mathematics
Languages : en
Pages : 398
Book Description
The leading mind behind the mathematics of string theory discusses how geometry explains the universe we see. Illustrations.
Publisher: Il Saggiatore
ISBN: 0465020232
Category : Mathematics
Languages : en
Pages : 398
Book Description
The leading mind behind the mathematics of string theory discusses how geometry explains the universe we see. Illustrations.
Symmetry, Causality, Mind
Author: Michael Leyton
Publisher: MIT Press
ISBN: 9780262621311
Category : Philosophy
Languages : en
Pages : 644
Book Description
In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. Michael Leyton's arguments about the nature of perception and cognition are fascinating, exciting, and sure to be controversial. In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. He elaborates a system of rules by which the conversion to memory takes place and presents a number of detailed case studies--in perception, linguistics, art, and even political subjugation--that support these rules. Leyton observes that the mind assigns to any shape a causal history explaining how the shape was formed. We cannot help but perceive a deformed can as a dented can. Moreover, by reducing the study of shape to the study of symmetry, he shows that symmetry is crucial to our everyday cognitive processing. Symmetry is the means by which shape is converted into memory. Perception is usually regarded as the recovery of the spatial layout of the environment. Leyton, however, shows that perception is fundamentally the extraction of time from shape. In doing so, he is able to reduce the several areas of computational vision purely to symmetry principles. Examining grammar in linguistics, he argues that a sentence is psychologically represented as a piece of causal history, an archeological relic disinterred by the listener so that the sentence reveals the past. Again through a detailed analysis of art he shows that what the viewer takes to be the experience of a painting is in fact the extraction of time from the shapes of the painting. Finally he highlights crucial aspects of the mind's attempt to recover time in examples of political subjugation.
Publisher: MIT Press
ISBN: 9780262621311
Category : Philosophy
Languages : en
Pages : 644
Book Description
In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. Michael Leyton's arguments about the nature of perception and cognition are fascinating, exciting, and sure to be controversial. In this investigation of the psychological relationship between shape and time, Leyton argues compellingly that shape is used by the mind to recover the past and as such it forms a basis for memory. He elaborates a system of rules by which the conversion to memory takes place and presents a number of detailed case studies--in perception, linguistics, art, and even political subjugation--that support these rules. Leyton observes that the mind assigns to any shape a causal history explaining how the shape was formed. We cannot help but perceive a deformed can as a dented can. Moreover, by reducing the study of shape to the study of symmetry, he shows that symmetry is crucial to our everyday cognitive processing. Symmetry is the means by which shape is converted into memory. Perception is usually regarded as the recovery of the spatial layout of the environment. Leyton, however, shows that perception is fundamentally the extraction of time from shape. In doing so, he is able to reduce the several areas of computational vision purely to symmetry principles. Examining grammar in linguistics, he argues that a sentence is psychologically represented as a piece of causal history, an archeological relic disinterred by the listener so that the sentence reveals the past. Again through a detailed analysis of art he shows that what the viewer takes to be the experience of a painting is in fact the extraction of time from the shapes of the painting. Finally he highlights crucial aspects of the mind's attempt to recover time in examples of political subjugation.