Author: Peter J. Cameron
Publisher: Springer Science & Business Media
ISBN: 9781852330569
Category : Mathematics
Languages : en
Pages : 196
Book Description
Set theory, logic and category theory lie at the foundations of mathematics, and have a dramatic effect on the mathematics that we do, through the Axiom of Choice, Gödel's Theorem, and the Skolem Paradox. But they are also rich mathematical theories in their own right, contributing techniques and results to working mathematicians such as the Compactness Theorem and module categories. The book is aimed at those who know some mathematics and want to know more about its building blocks. Set theory is first treated naively an axiomatic treatment is given after the basics of first-order logic have been introduced. The discussion is su pported by a wide range of exercises. The final chapter touches on philosophical issues. The book is supported by a World Wibe Web site containing a variety of supplementary material.
Sets, Logic and Categories
Author: Peter J. Cameron
Publisher: Springer Science & Business Media
ISBN: 9781852330569
Category : Mathematics
Languages : en
Pages : 196
Book Description
Set theory, logic and category theory lie at the foundations of mathematics, and have a dramatic effect on the mathematics that we do, through the Axiom of Choice, Gödel's Theorem, and the Skolem Paradox. But they are also rich mathematical theories in their own right, contributing techniques and results to working mathematicians such as the Compactness Theorem and module categories. The book is aimed at those who know some mathematics and want to know more about its building blocks. Set theory is first treated naively an axiomatic treatment is given after the basics of first-order logic have been introduced. The discussion is su pported by a wide range of exercises. The final chapter touches on philosophical issues. The book is supported by a World Wibe Web site containing a variety of supplementary material.
Publisher: Springer Science & Business Media
ISBN: 9781852330569
Category : Mathematics
Languages : en
Pages : 196
Book Description
Set theory, logic and category theory lie at the foundations of mathematics, and have a dramatic effect on the mathematics that we do, through the Axiom of Choice, Gödel's Theorem, and the Skolem Paradox. But they are also rich mathematical theories in their own right, contributing techniques and results to working mathematicians such as the Compactness Theorem and module categories. The book is aimed at those who know some mathematics and want to know more about its building blocks. Set theory is first treated naively an axiomatic treatment is given after the basics of first-order logic have been introduced. The discussion is su pported by a wide range of exercises. The final chapter touches on philosophical issues. The book is supported by a World Wibe Web site containing a variety of supplementary material.
Linear Representations of Partially Ordered Sets and Vector Space Categories
Author: Daniel Simson
Publisher: CRC Press
ISBN: 9782881248283
Category : Mathematics
Languages : en
Pages : 516
Book Description
This volume provides an elementary yet comprehensive introduction to representations of partially ordered sets and bimodule matrix problems, and their use in representation theory of algebras. It includes a discussion of representation types of algebras and partially ordered sets. Various characterizations of representation-finite and representation-tame partially ordered sets are offered and a description of their indecomposable representations is given. Auslander-Reiten theory is demonstrated together with a computer accessible algorithm for determining in decomposable representations and the Auslander-Reiten quiver of any representation-finite partially ordered set.
Publisher: CRC Press
ISBN: 9782881248283
Category : Mathematics
Languages : en
Pages : 516
Book Description
This volume provides an elementary yet comprehensive introduction to representations of partially ordered sets and bimodule matrix problems, and their use in representation theory of algebras. It includes a discussion of representation types of algebras and partially ordered sets. Various characterizations of representation-finite and representation-tame partially ordered sets are offered and a description of their indecomposable representations is given. Auslander-Reiten theory is demonstrated together with a computer accessible algorithm for determining in decomposable representations and the Auslander-Reiten quiver of any representation-finite partially ordered set.
Basic Category Theory
Author: Tom Leinster
Publisher: Cambridge University Press
ISBN: 1107044243
Category : Mathematics
Languages : en
Pages : 193
Book Description
A short introduction ideal for students learning category theory for the first time.
Publisher: Cambridge University Press
ISBN: 1107044243
Category : Mathematics
Languages : en
Pages : 193
Book Description
A short introduction ideal for students learning category theory for the first time.
Categories for the Working Mathematician
Author: Saunders Mac Lane
Publisher: Springer Science & Business Media
ISBN: 1475747217
Category : Mathematics
Languages : en
Pages : 320
Book Description
An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.
Publisher: Springer Science & Business Media
ISBN: 1475747217
Category : Mathematics
Languages : en
Pages : 320
Book Description
An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.
Sets for Mathematics
Author: F. William Lawvere
Publisher: Cambridge University Press
ISBN: 9780521010603
Category : Mathematics
Languages : en
Pages : 280
Book Description
In this book, first published in 2003, categorical algebra is used to build a foundation for the study of geometry, analysis, and algebra.
Publisher: Cambridge University Press
ISBN: 9780521010603
Category : Mathematics
Languages : en
Pages : 280
Book Description
In this book, first published in 2003, categorical algebra is used to build a foundation for the study of geometry, analysis, and algebra.
Set Theory, Logic and Their Limitations
Author: Moshe Machover
Publisher: Cambridge University Press
ISBN: 9780521479981
Category : Mathematics
Languages : en
Pages : 304
Book Description
This is an introduction to set theory and logic that starts completely from scratch. The text is accompanied by many methodological remarks and explanations. A rigorous axiomatic presentation of Zermelo-Fraenkel set theory is given, demonstrating how the basic concepts of mathematics have apparently been reduced to set theory. This is followed by a presentation of propositional and first-order logic. Concepts and results of recursion theory are explained in intuitive terms, and the author proves and explains the limitative results of Skolem, Tarski, Church and Gödel (the celebrated incompleteness theorems). For students of mathematics or philosophy this book provides an excellent introduction to logic and set theory.
Publisher: Cambridge University Press
ISBN: 9780521479981
Category : Mathematics
Languages : en
Pages : 304
Book Description
This is an introduction to set theory and logic that starts completely from scratch. The text is accompanied by many methodological remarks and explanations. A rigorous axiomatic presentation of Zermelo-Fraenkel set theory is given, demonstrating how the basic concepts of mathematics have apparently been reduced to set theory. This is followed by a presentation of propositional and first-order logic. Concepts and results of recursion theory are explained in intuitive terms, and the author proves and explains the limitative results of Skolem, Tarski, Church and Gödel (the celebrated incompleteness theorems). For students of mathematics or philosophy this book provides an excellent introduction to logic and set theory.
Set Theory and Logic
Author: Robert R. Stoll
Publisher: Courier Corporation
ISBN: 0486139646
Category : Mathematics
Languages : en
Pages : 516
Book Description
Explores sets and relations, the natural number sequence and its generalization, extension of natural numbers to real numbers, logic, informal axiomatic mathematics, Boolean algebras, informal axiomatic set theory, several algebraic theories, and 1st-order theories.
Publisher: Courier Corporation
ISBN: 0486139646
Category : Mathematics
Languages : en
Pages : 516
Book Description
Explores sets and relations, the natural number sequence and its generalization, extension of natural numbers to real numbers, logic, informal axiomatic mathematics, Boolean algebras, informal axiomatic set theory, several algebraic theories, and 1st-order theories.
Categorical Logic and Type Theory
Author: B. Jacobs
Publisher: Gulf Professional Publishing
ISBN: 9780444508539
Category : Computers
Languages : en
Pages : 784
Book Description
This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.
Publisher: Gulf Professional Publishing
ISBN: 9780444508539
Category : Computers
Languages : en
Pages : 784
Book Description
This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.
An Invitation to Applied Category Theory
Author: Brendan Fong
Publisher: Cambridge University Press
ISBN: 1108582249
Category : Mathematics
Languages : en
Pages : 351
Book Description
Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.
Publisher: Cambridge University Press
ISBN: 1108582249
Category : Mathematics
Languages : en
Pages : 351
Book Description
Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.
The Mathematics of Logic
Author: Richard W. Kaye
Publisher: Cambridge University Press
ISBN: 1139467212
Category : Mathematics
Languages : en
Pages : 12
Book Description
This undergraduate textbook covers the key material for a typical first course in logic, in particular presenting a full mathematical account of the most important result in logic, the Completeness Theorem for first-order logic. Looking at a series of interesting systems, increasing in complexity, then proving and discussing the Completeness Theorem for each, the author ensures that the number of new concepts to be absorbed at each stage is manageable, whilst providing lively mathematical applications throughout. Unfamiliar terminology is kept to a minimum, no background in formal set-theory is required, and the book contains proofs of all the required set theoretical results. The reader is taken on a journey starting with König's Lemma, and progressing via order relations, Zorn's Lemma, Boolean algebras, and propositional logic, to completeness and compactness of first-order logic. As applications of the work on first-order logic, two final chapters provide introductions to model theory and nonstandard analysis.
Publisher: Cambridge University Press
ISBN: 1139467212
Category : Mathematics
Languages : en
Pages : 12
Book Description
This undergraduate textbook covers the key material for a typical first course in logic, in particular presenting a full mathematical account of the most important result in logic, the Completeness Theorem for first-order logic. Looking at a series of interesting systems, increasing in complexity, then proving and discussing the Completeness Theorem for each, the author ensures that the number of new concepts to be absorbed at each stage is manageable, whilst providing lively mathematical applications throughout. Unfamiliar terminology is kept to a minimum, no background in formal set-theory is required, and the book contains proofs of all the required set theoretical results. The reader is taken on a journey starting with König's Lemma, and progressing via order relations, Zorn's Lemma, Boolean algebras, and propositional logic, to completeness and compactness of first-order logic. As applications of the work on first-order logic, two final chapters provide introductions to model theory and nonstandard analysis.