Set Operads in Combinatorics and Computer Science

Set Operads in Combinatorics and Computer Science PDF Author: Miguel A. Méndez
Publisher: Springer
ISBN: 3319117130
Category : Mathematics
Languages : en
Pages : 139

Get Book Here

Book Description
This monograph has two main objectives. The first one is to give a self-contained exposition of the relevant facts about set operads, in the context of combinatorial species and its operations. This approach has various advantages: one of them is that the definition of combinatorial operations on species, product, sum, substitution and derivative, are simple and natural. They were designed as the set theoretical counterparts of the homonym operations on exponential generating functions, giving an immediate insight on the combinatorial meaning of them. The second objective is more ambitious. Before formulating it, authors present a brief historic account on the sources of decomposition theory. For more than forty years decompositions of discrete structures have been studied in different branches of discrete mathematics: combinatorial optimization, network and graph theory, switching design or boolean functions, simple multi-person games and clutters, etc.

Set Operads in Combinatorics and Computer Science

Set Operads in Combinatorics and Computer Science PDF Author: Miguel A. Méndez
Publisher: Springer
ISBN: 3319117130
Category : Mathematics
Languages : en
Pages : 139

Get Book Here

Book Description
This monograph has two main objectives. The first one is to give a self-contained exposition of the relevant facts about set operads, in the context of combinatorial species and its operations. This approach has various advantages: one of them is that the definition of combinatorial operations on species, product, sum, substitution and derivative, are simple and natural. They were designed as the set theoretical counterparts of the homonym operations on exponential generating functions, giving an immediate insight on the combinatorial meaning of them. The second objective is more ambitious. Before formulating it, authors present a brief historic account on the sources of decomposition theory. For more than forty years decompositions of discrete structures have been studied in different branches of discrete mathematics: combinatorial optimization, network and graph theory, switching design or boolean functions, simple multi-person games and clutters, etc.

Nonsymmetric Operads in Combinatorics

Nonsymmetric Operads in Combinatorics PDF Author: Samuele Giraudo
Publisher: Springer
ISBN: 3030020746
Category : Mathematics
Languages : en
Pages : 176

Get Book Here

Book Description
Operads are algebraic devices offering a formalization of the concept of operations with several inputs and one output. Such operations can be naturally composed to form more complex ones. Coming historically from algebraic topology, operads intervene now as important objects in computer science and in combinatorics. A lot of operads involving combinatorial objects highlight some of their properties and allow to discover new ones. This book portrays the main elements of this theory under a combinatorial point of view and exposes the links it maintains with computer science and combinatorics. Examples of operads appearing in combinatorics are studied. The modern treatment of operads consisting in considering the space of formal power series associated with an operad is developed. Enrichments of nonsymmetric operads as colored, cyclic, and symmetric operads are reviewed.

Operads of Wiring Diagrams

Operads of Wiring Diagrams PDF Author: Donald Yau
Publisher: Springer
ISBN: 3319950010
Category : Mathematics
Languages : en
Pages : 302

Get Book Here

Book Description
Wiring diagrams form a kind of graphical language that describes operations or processes with multiple inputs and outputs, and shows how such operations are wired together to form a larger and more complex operation. This monograph presents a comprehensive study of the combinatorial structure of the various operads of wiring diagrams, their algebras, and the relationships between these operads. The book proves finite presentation theorems for operads of wiring diagrams as well as their algebras. These theorems describe the operad in terms of just a few operadic generators and a small number of generating relations. The author further explores recent trends in the application of operad theory to wiring diagrams and related structures, including finite presentations for the propagator algebra, the algebra of discrete systems, the algebra of open dynamical systems, and the relational algebra. A partial verification of David Spivak’s conjecture regarding the quotient-freeness of the relational algebra is also provided. In the final part, the author constructs operad maps between the various operads of wiring diagrams and identifies their images. Assuming only basic knowledge of algebra, combinatorics, and set theory, this book is aimed at advanced undergraduate and graduate students as well as researchers working in operad theory and its applications. Numerous illustrations, examples, and practice exercises are included, making this a self-contained volume suitable for self-study.

Infinity Operads And Monoidal Categories With Group Equivariance

Infinity Operads And Monoidal Categories With Group Equivariance PDF Author: Donald Yau
Publisher: World Scientific
ISBN: 9811250944
Category : Mathematics
Languages : en
Pages : 486

Get Book Here

Book Description
This monograph provides a coherent development of operads, infinity operads, and monoidal categories, equipped with equivariant structures encoded by an action operad. A group operad is a planar operad with an action operad equivariant structure. In the first three parts of this monograph, we establish a foundation for group operads and for their higher coherent analogues called infinity group operads. Examples include planar, symmetric, braided, ribbon, and cactus operads, and their infinity analogues. For example, with the tools developed here, we observe that the coherent ribbon nerve of the universal cover of the framed little 2-disc operad is an infinity ribbon operad.In Part 4 we define general monoidal categories equipped with an action operad equivariant structure and provide a unifying treatment of coherence and strictification for them. Examples of such monoidal categories include symmetric, braided, ribbon, and coboundary monoidal categories, which naturally arise in the representation theory of quantum groups and of coboundary Hopf algebras and in the theory of crystals of finite dimensional complex reductive Lie algebras.

Colored Operads

Colored Operads PDF Author: Donald Yau
Publisher: American Mathematical Soc.
ISBN: 1470427230
Category : Mathematics
Languages : en
Pages : 458

Get Book Here

Book Description
The subject of this book is the theory of operads and colored operads, sometimes called symmetric multicategories. A (colored) operad is an abstract object which encodes operations with multiple inputs and one output and relations between such operations. The theory originated in the early 1970s in homotopy theory and quickly became very important in algebraic topology, algebra, algebraic geometry, and even theoretical physics (string theory). Topics covered include basic graph theory, basic category theory, colored operads, and algebras over colored operads. Free colored operads are discussed in complete detail and in full generality. The intended audience of this book includes students and researchers in mathematics and other sciences where operads and colored operads are used. The prerequisite for this book is minimal. Every major concept is thoroughly motivated. There are many graphical illustrations and about 150 exercises. This book can be used in a graduate course and for independent study.

Bimonoids for Hyperplane Arrangements

Bimonoids for Hyperplane Arrangements PDF Author: Marcelo Aguiar
Publisher: Cambridge University Press
ISBN: 1108852785
Category : Mathematics
Languages : en
Pages : 854

Get Book Here

Book Description
The goal of this monograph is to develop Hopf theory in a new setting which features centrally a real hyperplane arrangement. The new theory is parallel to the classical theory of connected Hopf algebras, and relates to it when specialized to the braid arrangement. Joyal's theory of combinatorial species, ideas from Tits' theory of buildings, and Rota's work on incidence algebras inspire and find a common expression in this theory. The authors introduce notions of monoid, comonoid, bimonoid, and Lie monoid relative to a fixed hyperplane arrangement. They also construct universal bimonoids by using generalizations of the classical notions of shuffle and quasishuffle, and establish the Borel–Hopf, Poincaré–Birkhoff–Witt, and Cartier–Milnor–Moore theorems in this setting. This monograph opens a vast new area of research. It will be of interest to students and researchers working in the areas of hyperplane arrangements, semigroup theory, Hopf algebras, algebraic Lie theory, operads, and category theory.

Coxeter Bialgebras

Coxeter Bialgebras PDF Author: Marcelo Aguiar
Publisher: Cambridge University Press
ISBN: 100924373X
Category : Mathematics
Languages : en
Pages : 897

Get Book Here

Book Description
The goal of this monograph is to develop Hopf theory in the setting of a real reflection arrangement. The central notion is that of a Coxeter bialgebra which generalizes the classical notion of a connected graded Hopf algebra. The authors also introduce the more structured notion of a Coxeter bimonoid and connect the two notions via a family of functors called Fock functors. These generalize similar functors connecting Hopf monoids in the category of Joyal species and connected graded Hopf algebras. This monograph opens a new chapter in Coxeter theory as well as in Hopf theory, connecting the two. It also relates fruitfully to many other areas of mathematics such as discrete geometry, semigroup theory, associative algebras, algebraic Lie theory, operads, and category theory. It is carefully written, with effective use of tables, diagrams, pictures, and summaries. It will be of interest to students and researchers alike.

Coalgebraic Methods in Computer Science

Coalgebraic Methods in Computer Science PDF Author: Barbara König
Publisher: Springer Nature
ISBN: 3031664388
Category :
Languages : en
Pages : 226

Get Book Here

Book Description


Appalachian Set Theory

Appalachian Set Theory PDF Author: James Cummings
Publisher: Cambridge University Press
ISBN: 1139852140
Category : Mathematics
Languages : en
Pages : 433

Get Book Here

Book Description
This volume takes its name from a popular series of intensive mathematics workshops hosted at institutions in Appalachia and surrounding areas. At these meetings, internationally prominent set theorists give one-day lectures that focus on important new directions, methods, tools and results so that non-experts can begin to master these and incorporate them into their own research. Each chapter in this volume was written by the workshop leaders in collaboration with select student participants, and together they represent most of the meetings from the period 2006–2012. Topics covered include forcing and large cardinals, descriptive set theory, and applications of set theoretic ideas in group theory and analysis, making this volume essential reading for a wide range of researchers and graduate students.

Topics in Theoretical Computer Science

Topics in Theoretical Computer Science PDF Author: Mohammad Reza Mousavi
Publisher: Springer
ISBN: 3319689533
Category : Computers
Languages : en
Pages : 139

Get Book Here

Book Description
This book constitutes the refereed proceedings of the Second IFIP WG 1.8 International Conference on Topics in Theoretical Computer Science, TTCS 2017, held in Tehran, Iran, in September 2017. The 8 papers presented in this volume were carefully reviewed and selected from 20 submissions. They were organized in topical sections named: algorithms and complexity; and logic, semantics, and programming theory.