Author: Eduardo García-Río
Publisher: Springer Science & Business Media
ISBN: 9401729794
Category : Mathematics
Languages : en
Pages : 203
Book Description
A major flaw in semi-Riemannian geometry is a shortage of suitable types of maps between semi-Riemannian manifolds that will compare their geometric properties. Here, a class of such maps called semi-Riemannian maps is introduced. The main purpose of this book is to present results in semi-Riemannian geometry obtained by the existence of such a map between semi-Riemannian manifolds, as well as to encourage the reader to explore these maps. The first three chapters are devoted to the development of fundamental concepts and formulas in semi-Riemannian geometry which are used throughout the work. In Chapters 4 and 5 semi-Riemannian maps and such maps with respect to a semi-Riemannian foliation are studied. Chapter 6 studies the maps from a semi-Riemannian manifold to 1-dimensional semi- Euclidean space. In Chapter 7 some splitting theorems are obtained by using the existence of a semi-Riemannian map. Audience: This volume will be of interest to mathematicians and physicists whose work involves differential geometry, global analysis, or relativity and gravitation.
Semi-Riemannian Maps and Their Applications
Semi-Riemannian Geometry With Applications to Relativity
Author: Barrett O'Neill
Publisher: Academic Press
ISBN: 0080570577
Category : Mathematics
Languages : en
Pages : 483
Book Description
This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest.
Publisher: Academic Press
ISBN: 0080570577
Category : Mathematics
Languages : en
Pages : 483
Book Description
This book is an exposition of semi-Riemannian geometry (also called pseudo-Riemannian geometry)--the study of a smooth manifold furnished with a metric tensor of arbitrary signature. The principal special cases are Riemannian geometry, where the metric is positive definite, and Lorentz geometry. For many years these two geometries have developed almost independently: Riemannian geometry reformulated in coordinate-free fashion and directed toward global problems, Lorentz geometry in classical tensor notation devoted to general relativity. More recently, this divergence has been reversed as physicists, turning increasingly toward invariant methods, have produced results of compelling mathematical interest.
Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications
Author: Bayram Sahin
Publisher: Academic Press
ISBN: 0128044101
Category : Mathematics
Languages : en
Pages : 362
Book Description
Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications is a rich and self-contained exposition of recent developments in Riemannian submersions and maps relevant to complex geometry, focusing particularly on novel submersions, Hermitian manifolds, and K\{a}hlerian manifolds. Riemannian submersions have long been an effective tool to obtain new manifolds and compare certain manifolds within differential geometry. For complex cases, only holomorphic submersions function appropriately, as discussed at length in Falcitelli, Ianus and Pastore's classic 2004 book. In this new book, Bayram Sahin extends the scope of complex cases with wholly new submersion types, including Anti-invariant submersions, Semi-invariant submersions, slant submersions, and Pointwise slant submersions, also extending their use in Riemannian maps. The work obtains new properties of the domain and target manifolds and investigates the harmonicity and geodesicity conditions for such maps. It also relates these maps with discoveries in pseudo-harmonic maps. Results included in this volume should stimulate future research on Riemannian submersions and Riemannian maps. - Systematically reviews and references modern literature in Riemannian maps - Provides rigorous mathematical theory with applications - Presented in an accessible reading style with motivating examples that help the reader rapidly progress
Publisher: Academic Press
ISBN: 0128044101
Category : Mathematics
Languages : en
Pages : 362
Book Description
Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications is a rich and self-contained exposition of recent developments in Riemannian submersions and maps relevant to complex geometry, focusing particularly on novel submersions, Hermitian manifolds, and K\{a}hlerian manifolds. Riemannian submersions have long been an effective tool to obtain new manifolds and compare certain manifolds within differential geometry. For complex cases, only holomorphic submersions function appropriately, as discussed at length in Falcitelli, Ianus and Pastore's classic 2004 book. In this new book, Bayram Sahin extends the scope of complex cases with wholly new submersion types, including Anti-invariant submersions, Semi-invariant submersions, slant submersions, and Pointwise slant submersions, also extending their use in Riemannian maps. The work obtains new properties of the domain and target manifolds and investigates the harmonicity and geodesicity conditions for such maps. It also relates these maps with discoveries in pseudo-harmonic maps. Results included in this volume should stimulate future research on Riemannian submersions and Riemannian maps. - Systematically reviews and references modern literature in Riemannian maps - Provides rigorous mathematical theory with applications - Presented in an accessible reading style with motivating examples that help the reader rapidly progress
Semi-Riemannian Geometry
Author: Stephen C. Newman
Publisher: John Wiley & Sons
ISBN: 1119517532
Category : Mathematics
Languages : en
Pages : 656
Book Description
An introduction to semi-Riemannian geometry as a foundation for general relativity Semi-Riemannian Geometry: The Mathematical Language of General Relativity is an accessible exposition of the mathematics underlying general relativity. The book begins with background on linear and multilinear algebra, general topology, and real analysis. This is followed by material on the classical theory of curves and surfaces, expanded to include both the Lorentz and Euclidean signatures. The remainder of the book is devoted to a discussion of smooth manifolds, smooth manifolds with boundary, smooth manifolds with a connection, semi-Riemannian manifolds, and differential operators, culminating in applications to Maxwell’s equations and the Einstein tensor. Many worked examples and detailed diagrams are provided to aid understanding. This book will appeal especially to physics students wishing to learn more differential geometry than is usually provided in texts on general relativity.
Publisher: John Wiley & Sons
ISBN: 1119517532
Category : Mathematics
Languages : en
Pages : 656
Book Description
An introduction to semi-Riemannian geometry as a foundation for general relativity Semi-Riemannian Geometry: The Mathematical Language of General Relativity is an accessible exposition of the mathematics underlying general relativity. The book begins with background on linear and multilinear algebra, general topology, and real analysis. This is followed by material on the classical theory of curves and surfaces, expanded to include both the Lorentz and Euclidean signatures. The remainder of the book is devoted to a discussion of smooth manifolds, smooth manifolds with boundary, smooth manifolds with a connection, semi-Riemannian manifolds, and differential operators, culminating in applications to Maxwell’s equations and the Einstein tensor. Many worked examples and detailed diagrams are provided to aid understanding. This book will appeal especially to physics students wishing to learn more differential geometry than is usually provided in texts on general relativity.
Differential Geometry and Global Analysis
Author: Bang-Yen Chen
Publisher: American Mathematical Society
ISBN: 1470460157
Category : Mathematics
Languages : en
Pages : 242
Book Description
This volume contains the proceedings of the AMS Special Session on Differential Geometry and Global Analysis, Honoring the Memory of Tadashi Nagano (1930–2017), held January 16, 2020, in Denver, Colorado. Tadashi Nagano was one of the great Japanese differential geometers, whose fundamental and seminal work still attracts much interest today. This volume is inspired by his work and his legacy and, while recalling historical results, presents recent developments in the geometry of symmetric spaces as well as generalizations of symmetric spaces; minimal surfaces and minimal submanifolds; totally geodesic submanifolds and their classification; Riemannian, affine, projective, and conformal connections; the $(M_{+}, M_{-})$ method and its applications; and maximal antipodal subsets. Additionally, the volume features recent achievements related to biharmonic and biconservative hypersurfaces in space forms, the geometry of Laplace operator on Riemannian manifolds, and Chen-Ricci inequalities for Riemannian maps, among other topics that could attract the interest of any scholar working in differential geometry and global analysis on manifolds.
Publisher: American Mathematical Society
ISBN: 1470460157
Category : Mathematics
Languages : en
Pages : 242
Book Description
This volume contains the proceedings of the AMS Special Session on Differential Geometry and Global Analysis, Honoring the Memory of Tadashi Nagano (1930–2017), held January 16, 2020, in Denver, Colorado. Tadashi Nagano was one of the great Japanese differential geometers, whose fundamental and seminal work still attracts much interest today. This volume is inspired by his work and his legacy and, while recalling historical results, presents recent developments in the geometry of symmetric spaces as well as generalizations of symmetric spaces; minimal surfaces and minimal submanifolds; totally geodesic submanifolds and their classification; Riemannian, affine, projective, and conformal connections; the $(M_{+}, M_{-})$ method and its applications; and maximal antipodal subsets. Additionally, the volume features recent achievements related to biharmonic and biconservative hypersurfaces in space forms, the geometry of Laplace operator on Riemannian manifolds, and Chen-Ricci inequalities for Riemannian maps, among other topics that could attract the interest of any scholar working in differential geometry and global analysis on manifolds.
Differentiable and Complex Dynamics of Several Variables
Author: Pei-Chu Hu
Publisher: Springer Science & Business Media
ISBN: 9401592993
Category : Mathematics
Languages : en
Pages : 348
Book Description
The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR. , and if the force f is supposed to be a function of x only, Newton's Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v = :i; = ~~ E IR. . Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = - \lU of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x,v) = 2'm(v,v) - U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation ~~ are used as the variables, the Euler-Lagrange equation can be If the momenta y written as . 8L y= 8x' Further, W. R.
Publisher: Springer Science & Business Media
ISBN: 9401592993
Category : Mathematics
Languages : en
Pages : 348
Book Description
The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR. , and if the force f is supposed to be a function of x only, Newton's Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v = :i; = ~~ E IR. . Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = - \lU of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x,v) = 2'm(v,v) - U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation ~~ are used as the variables, the Euler-Lagrange equation can be If the momenta y written as . 8L y= 8x' Further, W. R.
Riemannian Submersions and Related Topics
Author: Maria Falcitelli
Publisher: World Scientific
ISBN: 9812388966
Category : Mathematics
Languages : en
Pages : 292
Book Description
- First systematic exposition devoted to Riemannian submersions - Deals with current material - Contains a wide-ranging bibliography and about 350 references
Publisher: World Scientific
ISBN: 9812388966
Category : Mathematics
Languages : en
Pages : 292
Book Description
- First systematic exposition devoted to Riemannian submersions - Deals with current material - Contains a wide-ranging bibliography and about 350 references
Complex Geometry of Slant Submanifolds
Author: Bang-Yen Chen
Publisher: Springer Nature
ISBN: 981160021X
Category : Mathematics
Languages : en
Pages : 393
Book Description
This book contains an up-to-date survey and self-contained chapters on complex slant submanifolds and geometry, authored by internationally renowned researchers. The book discusses a wide range of topics, including slant surfaces, slant submersions, nearly Kaehler, locally conformal Kaehler, and quaternion Kaehler manifolds. It provides several classification results of minimal slant surfaces, quasi-minimal slant surfaces, slant surfaces with parallel mean curvature vector, pseudo-umbilical slant surfaces, and biharmonic and quasi biharmonic slant surfaces in Lorentzian complex space forms. Furthermore, this book includes new results on slant submanifolds of para-Hermitian manifolds. This book also includes recent results on slant lightlike submanifolds of indefinite Hermitian manifolds, which are of extensive use in general theory of relativity and potential applications in radiation and electromagnetic fields. Various open problems and conjectures on slant surfaces in complex space forms are also included in the book. It presents detailed information on the most recent advances in the area, making it valuable for scientists, educators and graduate students.
Publisher: Springer Nature
ISBN: 981160021X
Category : Mathematics
Languages : en
Pages : 393
Book Description
This book contains an up-to-date survey and self-contained chapters on complex slant submanifolds and geometry, authored by internationally renowned researchers. The book discusses a wide range of topics, including slant surfaces, slant submersions, nearly Kaehler, locally conformal Kaehler, and quaternion Kaehler manifolds. It provides several classification results of minimal slant surfaces, quasi-minimal slant surfaces, slant surfaces with parallel mean curvature vector, pseudo-umbilical slant surfaces, and biharmonic and quasi biharmonic slant surfaces in Lorentzian complex space forms. Furthermore, this book includes new results on slant submanifolds of para-Hermitian manifolds. This book also includes recent results on slant lightlike submanifolds of indefinite Hermitian manifolds, which are of extensive use in general theory of relativity and potential applications in radiation and electromagnetic fields. Various open problems and conjectures on slant surfaces in complex space forms are also included in the book. It presents detailed information on the most recent advances in the area, making it valuable for scientists, educators and graduate students.
New Developments in Differential Geometry, Budapest 1996
Author: J. Szenthe
Publisher: Springer Science & Business Media
ISBN: 9401152764
Category : Mathematics
Languages : en
Pages : 513
Book Description
Proceedings of the Conference on Differential Geometry, Budapest, Hungary, July 27-30, 1996
Publisher: Springer Science & Business Media
ISBN: 9401152764
Category : Mathematics
Languages : en
Pages : 513
Book Description
Proceedings of the Conference on Differential Geometry, Budapest, Hungary, July 27-30, 1996
Differential and Riemannian Manifolds
Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 1461241820
Category : Mathematics
Languages : en
Pages : 376
Book Description
This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great expansion of the subject. At the time, I found no satisfactory book for the foundations of the subject, for multiple reasons. I expanded the book in 1971, and I expand it still further today. Specifically, I have added three chapters on Riemannian and pseudo Riemannian geometry, that is, covariant derivatives, curvature, and some applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as well as some calculus of variations and applications to volume forms. I have rewritten the sections on sprays, and I have given more examples of the use of Stokes' theorem. I have also given many more references to the literature, all of this to broaden the perspective of the book, which I hope can be used among things for a general course leading into many directions. The present book still meets the old needs, but fulfills new ones. At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.).
Publisher: Springer Science & Business Media
ISBN: 1461241820
Category : Mathematics
Languages : en
Pages : 376
Book Description
This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great expansion of the subject. At the time, I found no satisfactory book for the foundations of the subject, for multiple reasons. I expanded the book in 1971, and I expand it still further today. Specifically, I have added three chapters on Riemannian and pseudo Riemannian geometry, that is, covariant derivatives, curvature, and some applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as well as some calculus of variations and applications to volume forms. I have rewritten the sections on sprays, and I have given more examples of the use of Stokes' theorem. I have also given many more references to the literature, all of this to broaden the perspective of the book, which I hope can be used among things for a general course leading into many directions. The present book still meets the old needs, but fulfills new ones. At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.).