Author: Volodymyr Nekrashevych
Publisher: American Mathematical Society
ISBN: 1470476916
Category : Mathematics
Languages : en
Pages : 248
Book Description
Self-similar groups (groups generated by automata) appeared initially as examples of groups that are easy to define but that enjoy exotic properties like nontrivial torsion, intermediate growth, etc. The book studies the self-similarity phenomenon in group theory and shows its intimate relation with dynamical systems and more classical self-similar structures, such as fractals, Julia sets, and self-affine tilings. The relation is established through the notions of the iterated monodromy group and the limit space, which are the central topics of the book. A wide variety of examples and different applications of self-similar groups to dynamical systems and vice versa are discussed. It is shown in particular how Julia sets can be reconstructed from the respective iterated monodromy groups and that groups with exotic properties appear now not just as isolated examples but as naturally defined iterated monodromy groups of rational functions. The book is intended to be accessible to a wide mathematical readership, including graduate students interested in group theory and dynamical systems.
Self-Similar Groups
Author: Volodymyr Nekrashevych
Publisher: American Mathematical Society
ISBN: 1470476916
Category : Mathematics
Languages : en
Pages : 248
Book Description
Self-similar groups (groups generated by automata) appeared initially as examples of groups that are easy to define but that enjoy exotic properties like nontrivial torsion, intermediate growth, etc. The book studies the self-similarity phenomenon in group theory and shows its intimate relation with dynamical systems and more classical self-similar structures, such as fractals, Julia sets, and self-affine tilings. The relation is established through the notions of the iterated monodromy group and the limit space, which are the central topics of the book. A wide variety of examples and different applications of self-similar groups to dynamical systems and vice versa are discussed. It is shown in particular how Julia sets can be reconstructed from the respective iterated monodromy groups and that groups with exotic properties appear now not just as isolated examples but as naturally defined iterated monodromy groups of rational functions. The book is intended to be accessible to a wide mathematical readership, including graduate students interested in group theory and dynamical systems.
Publisher: American Mathematical Society
ISBN: 1470476916
Category : Mathematics
Languages : en
Pages : 248
Book Description
Self-similar groups (groups generated by automata) appeared initially as examples of groups that are easy to define but that enjoy exotic properties like nontrivial torsion, intermediate growth, etc. The book studies the self-similarity phenomenon in group theory and shows its intimate relation with dynamical systems and more classical self-similar structures, such as fractals, Julia sets, and self-affine tilings. The relation is established through the notions of the iterated monodromy group and the limit space, which are the central topics of the book. A wide variety of examples and different applications of self-similar groups to dynamical systems and vice versa are discussed. It is shown in particular how Julia sets can be reconstructed from the respective iterated monodromy groups and that groups with exotic properties appear now not just as isolated examples but as naturally defined iterated monodromy groups of rational functions. The book is intended to be accessible to a wide mathematical readership, including graduate students interested in group theory and dynamical systems.
Self-Similar Groups
Author: Volodymyr Nekrashevych
Publisher: American Mathematical Soc.
ISBN: 0821838318
Category : Mathematics
Languages : en
Pages : 248
Book Description
Self-similar groups (groups generated by automata) initially appeared as examples of groups that are easy to define but have exotic properties like nontrivial torsion, intermediate growth, etc. This book studies the self-similarity phenomenon in group theory and shows its intimate relationship with dynamical systems and more classical self-similar structures, such as fractals, Julia sets, and self-affine tilings. This connection is established through the central topics of the book, which are the notions of the iterated monodromy group and limit space. A wide variety of examples and different applications of self-similar groups to dynamical systems and vice versa are discussed. In particular, it is shown that Julia sets can be reconstructed from the respective iterated monodromy groups and that groups with exotic properties can appear not just as isolated examples, but as naturally defined iterated monodromy groups of rational functions. The book offers important, new mathematics that will open new avenues of research in group theory and dynamical systems. It is intended to be accessible to a wide readership of professional mathematicians.
Publisher: American Mathematical Soc.
ISBN: 0821838318
Category : Mathematics
Languages : en
Pages : 248
Book Description
Self-similar groups (groups generated by automata) initially appeared as examples of groups that are easy to define but have exotic properties like nontrivial torsion, intermediate growth, etc. This book studies the self-similarity phenomenon in group theory and shows its intimate relationship with dynamical systems and more classical self-similar structures, such as fractals, Julia sets, and self-affine tilings. This connection is established through the central topics of the book, which are the notions of the iterated monodromy group and limit space. A wide variety of examples and different applications of self-similar groups to dynamical systems and vice versa are discussed. In particular, it is shown that Julia sets can be reconstructed from the respective iterated monodromy groups and that groups with exotic properties can appear not just as isolated examples, but as naturally defined iterated monodromy groups of rational functions. The book offers important, new mathematics that will open new avenues of research in group theory and dynamical systems. It is intended to be accessible to a wide readership of professional mathematicians.
Fractals: A Very Short Introduction
Author: Kenneth Falconer
Publisher: OUP Oxford
ISBN: 0191663441
Category : Mathematics
Languages : en
Pages : 153
Book Description
Many are familiar with the beauty and ubiquity of fractal forms within nature. Unlike the study of smooth forms such as spheres, fractal geometry describes more familiar shapes and patterns, such as the complex contours of coastlines, the outlines of clouds, and the branching of trees. In this Very Short Introduction, Kenneth Falconer looks at the roots of the 'fractal revolution' that occurred in mathematics in the 20th century, presents the 'new geometry' of fractals, explains the basic concepts, and explores the wide range of applications in science, and in aspects of economics. This is essential introductory reading for students of mathematics and science, and those interested in popular science and mathematics. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Publisher: OUP Oxford
ISBN: 0191663441
Category : Mathematics
Languages : en
Pages : 153
Book Description
Many are familiar with the beauty and ubiquity of fractal forms within nature. Unlike the study of smooth forms such as spheres, fractal geometry describes more familiar shapes and patterns, such as the complex contours of coastlines, the outlines of clouds, and the branching of trees. In this Very Short Introduction, Kenneth Falconer looks at the roots of the 'fractal revolution' that occurred in mathematics in the 20th century, presents the 'new geometry' of fractals, explains the basic concepts, and explores the wide range of applications in science, and in aspects of economics. This is essential introductory reading for students of mathematics and science, and those interested in popular science and mathematics. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Fractal Geometry and Stochastics IV
Author: Christoph Bandt
Publisher: Springer Science & Business Media
ISBN: 3034600305
Category : Mathematics
Languages : en
Pages : 292
Book Description
Over the last fifteen years fractal geometry has established itself as a substantial mathematical theory in its own right. The interplay between fractal geometry, analysis and stochastics has highly influenced recent developments in mathematical modeling of complicated structures. This process has been forced by problems in these areas related to applications in statistical physics, biomathematics and finance. This book is a collection of survey articles covering many of the most recent developments, like Schramm-Loewner evolution, fractal scaling limits, exceptional sets for percolation, and heat kernels on fractals. The authors were the keynote speakers at the conference "Fractal Geometry and Stochastics IV" at Greifswald in September 2008.
Publisher: Springer Science & Business Media
ISBN: 3034600305
Category : Mathematics
Languages : en
Pages : 292
Book Description
Over the last fifteen years fractal geometry has established itself as a substantial mathematical theory in its own right. The interplay between fractal geometry, analysis and stochastics has highly influenced recent developments in mathematical modeling of complicated structures. This process has been forced by problems in these areas related to applications in statistical physics, biomathematics and finance. This book is a collection of survey articles covering many of the most recent developments, like Schramm-Loewner evolution, fractal scaling limits, exceptional sets for percolation, and heat kernels on fractals. The authors were the keynote speakers at the conference "Fractal Geometry and Stochastics IV" at Greifswald in September 2008.
Languages and Automata
Author: Benjamin Steinberg
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110984520
Category : Mathematics
Languages : en
Pages : 589
Book Description
This reference discusses how automata and language theory can be used to understand solutions to solving equations in groups and word problems in groups. Examples presented include, how Fine scale complexity theory has entered group theory via these connections and how cellular automata, has been generalized into a group theoretic setting. Chapters written by experts in group theory and computer science explain these connections.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110984520
Category : Mathematics
Languages : en
Pages : 589
Book Description
This reference discusses how automata and language theory can be used to understand solutions to solving equations in groups and word problems in groups. Examples presented include, how Fine scale complexity theory has entered group theory via these connections and how cellular automata, has been generalized into a group theoretic setting. Chapters written by experts in group theory and computer science explain these connections.
Conformal Graph Directed Markov Systems on Carnot Groups
Author: Vasileios Chousionis
Publisher: American Mathematical Soc.
ISBN: 1470442159
Category : Mathematics
Languages : en
Pages : 170
Book Description
The authors develop a comprehensive theory of conformal graph directed Markov systems in the non-Riemannian setting of Carnot groups equipped with a sub-Riemannian metric. In particular, they develop the thermodynamic formalism and show that, under natural hypotheses, the limit set of an Carnot conformal GDMS has Hausdorff dimension given by Bowen's parameter. They illustrate their results for a variety of examples of both linear and nonlinear iterated function systems and graph directed Markov systems in such sub-Riemannian spaces. These include the Heisenberg continued fractions introduced by Lukyanenko and Vandehey as well as Kleinian and Schottky groups associated to the non-real classical rank one hyperbolic spaces.
Publisher: American Mathematical Soc.
ISBN: 1470442159
Category : Mathematics
Languages : en
Pages : 170
Book Description
The authors develop a comprehensive theory of conformal graph directed Markov systems in the non-Riemannian setting of Carnot groups equipped with a sub-Riemannian metric. In particular, they develop the thermodynamic formalism and show that, under natural hypotheses, the limit set of an Carnot conformal GDMS has Hausdorff dimension given by Bowen's parameter. They illustrate their results for a variety of examples of both linear and nonlinear iterated function systems and graph directed Markov systems in such sub-Riemannian spaces. These include the Heisenberg continued fractions introduced by Lukyanenko and Vandehey as well as Kleinian and Schottky groups associated to the non-real classical rank one hyperbolic spaces.
Fractals in Graz 2001
Author: Peter Grabner
Publisher: Birkhäuser
ISBN: 3034880146
Category : Mathematics
Languages : en
Pages : 288
Book Description
This book contains the proceedings of the conference "Fractals in Graz 2001 - Analysis, Dynamics, Geometry, Stochastics" that was held in the second week of June 2001 at Graz University of Technology, in the capital of Styria, southeastern province of Austria. The scientific committee of the meeting consisted of M. Barlow (Vancouver), R. Strichartz (Ithaca), P. Grabner and W. Woess (both Graz), the latter two being the local organizers and editors of this volume. We made an effort to unite in the conference as well as in the present pro ceedings a multitude of different directions of active current work, and to bring together researchers from various countries as well as research fields that all are linked in some way with the modern theory of fractal structures. Although (or because) in Graz there is only a very small group working on fractal structures, consisting of "non-insiders", we hope to have been successful with this program of wide horizons. All papers were written upon explicit invitation by the editors, and we are happy to be able to present this representative panorama of recent work on poten tial theory, random walks, spectral theory, fractal groups, dynamic systems, fractal geometry, and more. The papers presented here underwent a refereeing process.
Publisher: Birkhäuser
ISBN: 3034880146
Category : Mathematics
Languages : en
Pages : 288
Book Description
This book contains the proceedings of the conference "Fractals in Graz 2001 - Analysis, Dynamics, Geometry, Stochastics" that was held in the second week of June 2001 at Graz University of Technology, in the capital of Styria, southeastern province of Austria. The scientific committee of the meeting consisted of M. Barlow (Vancouver), R. Strichartz (Ithaca), P. Grabner and W. Woess (both Graz), the latter two being the local organizers and editors of this volume. We made an effort to unite in the conference as well as in the present pro ceedings a multitude of different directions of active current work, and to bring together researchers from various countries as well as research fields that all are linked in some way with the modern theory of fractal structures. Although (or because) in Graz there is only a very small group working on fractal structures, consisting of "non-insiders", we hope to have been successful with this program of wide horizons. All papers were written upon explicit invitation by the editors, and we are happy to be able to present this representative panorama of recent work on poten tial theory, random walks, spectral theory, fractal groups, dynamic systems, fractal geometry, and more. The papers presented here underwent a refereeing process.
Groups, Graphs and Random Walks
Author: Tullio Ceccherini-Silberstein
Publisher: Cambridge University Press
ISBN: 1316604403
Category : Mathematics
Languages : en
Pages : 539
Book Description
An up-to-date, panoramic account of the theory of random walks on groups and graphs, outlining connections with various mathematical fields.
Publisher: Cambridge University Press
ISBN: 1316604403
Category : Mathematics
Languages : en
Pages : 539
Book Description
An up-to-date, panoramic account of the theory of random walks on groups and graphs, outlining connections with various mathematical fields.
Infinite Groups: Geometric, Combinatorial and Dynamical Aspects
Author: Laurent Bartholdi
Publisher: Springer Science & Business Media
ISBN: 3764374470
Category : Mathematics
Languages : en
Pages : 419
Book Description
This book offers a panorama of recent advances in the theory of infinite groups. It contains survey papers contributed by leading specialists in group theory and other areas of mathematics. Topics include amenable groups, Kaehler groups, automorphism groups of rooted trees, rigidity, C*-algebras, random walks on groups, pro-p groups, Burnside groups, parafree groups, and Fuchsian groups. The accent is put on strong connections between group theory and other areas of mathematics.
Publisher: Springer Science & Business Media
ISBN: 3764374470
Category : Mathematics
Languages : en
Pages : 419
Book Description
This book offers a panorama of recent advances in the theory of infinite groups. It contains survey papers contributed by leading specialists in group theory and other areas of mathematics. Topics include amenable groups, Kaehler groups, automorphism groups of rooted trees, rigidity, C*-algebras, random walks on groups, pro-p groups, Burnside groups, parafree groups, and Fuchsian groups. The accent is put on strong connections between group theory and other areas of mathematics.
Analysis on Graphs and Its Applications
Author: Pavel Exner
Publisher: American Mathematical Soc.
ISBN: 0821844717
Category : Mathematics
Languages : en
Pages : 721
Book Description
This book addresses a new interdisciplinary area emerging on the border between various areas of mathematics, physics, chemistry, nanotechnology, and computer science. The focus here is on problems and techniques related to graphs, quantum graphs, and fractals that parallel those from differential equations, differential geometry, or geometric analysis. Also included are such diverse topics as number theory, geometric group theory, waveguide theory, quantum chaos, quantum wiresystems, carbon nano-structures, metal-insulator transition, computer vision, and communication networks.This volume contains a unique collection of expert reviews on the main directions in analysis on graphs (e.g., on discrete geometric analysis, zeta-functions on graphs, recently emerging connections between the geometric group theory and fractals, quantum graphs, quantum chaos on graphs, modeling waveguide systems and modeling quantum graph systems with waveguides, control theory on graphs), as well as research articles.
Publisher: American Mathematical Soc.
ISBN: 0821844717
Category : Mathematics
Languages : en
Pages : 721
Book Description
This book addresses a new interdisciplinary area emerging on the border between various areas of mathematics, physics, chemistry, nanotechnology, and computer science. The focus here is on problems and techniques related to graphs, quantum graphs, and fractals that parallel those from differential equations, differential geometry, or geometric analysis. Also included are such diverse topics as number theory, geometric group theory, waveguide theory, quantum chaos, quantum wiresystems, carbon nano-structures, metal-insulator transition, computer vision, and communication networks.This volume contains a unique collection of expert reviews on the main directions in analysis on graphs (e.g., on discrete geometric analysis, zeta-functions on graphs, recently emerging connections between the geometric group theory and fractals, quantum graphs, quantum chaos on graphs, modeling waveguide systems and modeling quantum graph systems with waveguides, control theory on graphs), as well as research articles.