Author: Ricard Solé
Publisher: Princeton University Press
ISBN: 140084293X
Category : Science
Languages : en
Pages : 392
Book Description
Can physics be an appropriate framework for the understanding of ecological science? Most ecologists would probably agree that there is little relation between the complexity of natural ecosystems and the simplicity of any example derived from Newtonian physics. Though ecologists have long been interested in concepts originally developed by statistical physicists and later applied to explain everything from why stock markets crash to why rivers develop particular branching patterns, applying such concepts to ecosystems has remained a challenge. Self-Organization in Complex Ecosystems is the first book to clearly synthesize what we have learned about the usefulness of tools from statistical physics in ecology. Ricard Solé and Jordi Bascompte provide a comprehensive introduction to complex systems theory, and ask: do universal laws shape the structure of ecosystems, at least at some scales? They offer the most compelling array of theoretical evidence to date of the potential of nonlinear ecological interactions to generate nonrandom, self-organized patterns at all levels. Tackling classic ecological questions--from population dynamics to biodiversity to macroevolution--the book's novel presentation of theories and data shows the power of statistical physics and complexity in ecology. Self-Organization in Complex Ecosystems will be a staple resource for years to come for ecologists interested in complex systems theory as well as mathematicians and physicists interested in ecology.
Self-Organization in Complex Ecosystems
Author: Ricard Solé
Publisher: Princeton University Press
ISBN: 140084293X
Category : Science
Languages : en
Pages : 392
Book Description
Can physics be an appropriate framework for the understanding of ecological science? Most ecologists would probably agree that there is little relation between the complexity of natural ecosystems and the simplicity of any example derived from Newtonian physics. Though ecologists have long been interested in concepts originally developed by statistical physicists and later applied to explain everything from why stock markets crash to why rivers develop particular branching patterns, applying such concepts to ecosystems has remained a challenge. Self-Organization in Complex Ecosystems is the first book to clearly synthesize what we have learned about the usefulness of tools from statistical physics in ecology. Ricard Solé and Jordi Bascompte provide a comprehensive introduction to complex systems theory, and ask: do universal laws shape the structure of ecosystems, at least at some scales? They offer the most compelling array of theoretical evidence to date of the potential of nonlinear ecological interactions to generate nonrandom, self-organized patterns at all levels. Tackling classic ecological questions--from population dynamics to biodiversity to macroevolution--the book's novel presentation of theories and data shows the power of statistical physics and complexity in ecology. Self-Organization in Complex Ecosystems will be a staple resource for years to come for ecologists interested in complex systems theory as well as mathematicians and physicists interested in ecology.
Publisher: Princeton University Press
ISBN: 140084293X
Category : Science
Languages : en
Pages : 392
Book Description
Can physics be an appropriate framework for the understanding of ecological science? Most ecologists would probably agree that there is little relation between the complexity of natural ecosystems and the simplicity of any example derived from Newtonian physics. Though ecologists have long been interested in concepts originally developed by statistical physicists and later applied to explain everything from why stock markets crash to why rivers develop particular branching patterns, applying such concepts to ecosystems has remained a challenge. Self-Organization in Complex Ecosystems is the first book to clearly synthesize what we have learned about the usefulness of tools from statistical physics in ecology. Ricard Solé and Jordi Bascompte provide a comprehensive introduction to complex systems theory, and ask: do universal laws shape the structure of ecosystems, at least at some scales? They offer the most compelling array of theoretical evidence to date of the potential of nonlinear ecological interactions to generate nonrandom, self-organized patterns at all levels. Tackling classic ecological questions--from population dynamics to biodiversity to macroevolution--the book's novel presentation of theories and data shows the power of statistical physics and complexity in ecology. Self-Organization in Complex Ecosystems will be a staple resource for years to come for ecologists interested in complex systems theory as well as mathematicians and physicists interested in ecology.
Complex Systems and Self-organization Modelling
Author: Cyrille Bertelle
Publisher: Springer Science & Business Media
ISBN: 3540880739
Category : Technology & Engineering
Languages : en
Pages : 233
Book Description
This book, the outcome of a workshop meeting within ESM 2006, explores the use of emergent computing and self-organization modeling within various applications of complex systems.
Publisher: Springer Science & Business Media
ISBN: 3540880739
Category : Technology & Engineering
Languages : en
Pages : 233
Book Description
This book, the outcome of a workshop meeting within ESM 2006, explores the use of emergent computing and self-organization modeling within various applications of complex systems.
Discontinuities in Ecosystems and Other Complex Systems
Author: Craig R. Allen
Publisher: Columbia University Press
ISBN: 0231516827
Category : Science
Languages : en
Pages : 287
Book Description
Following the publication of C. S. Holling's seminal work on the relationship between animal body mass patterns and scale-specific landscape structure, ecologists began to explore the theoretical and applied consequences of discontinuities in ecosystems and other complex systems. Are ecosystems and their components continuously distributed and do they adhere to scaling laws, or are they discontinuous and more complex than early models would have us believe? The resulting propositions over the structure of complex systems sparked an ongoing debate regarding the mechanisms generating discontinuities and the statistical methods used for their detection. This volume takes the view that ecosystems and other complex systems are inherently discontinuous and that such fields as ecology, economics, and urban studies greatly benefit from this paradigm shift. Contributors present evidence of the ubiquity of discontinuous distributions in ecological and social systems and how their analysis provides insight into complex phenomena. The book is divided into three sections. The first focuses on background material and contrasting views concerning the discontinuous organization of complex systems. The second discusses discontinuous patterns detected in a number of different systems and methods for detecting them, and the third touches on the potential significance of discontinuities in complex systems. Science is still dominated by a focus on power laws, but the contributors to this volume are convinced power laws often mask the interesting dynamics of systems and that those dynamics are best revealed by investigating deviations from assumed power law distributions. In 2008, a grand conference on resilience was held in Stockholm, hosting 600 participants from around the world. There are now three big centers established with resilience, the most recent one being the Stockholm Resilience Center, with others in Australia (an international coral reef center), Arizona State University's new sustainability center focusing on anthropology, and Canada's emerging social sciences and resilience center. Activity continues to flourish in Alaska, South Africa, and the Untied Kingdom, and a new center is forming in Uruguay.
Publisher: Columbia University Press
ISBN: 0231516827
Category : Science
Languages : en
Pages : 287
Book Description
Following the publication of C. S. Holling's seminal work on the relationship between animal body mass patterns and scale-specific landscape structure, ecologists began to explore the theoretical and applied consequences of discontinuities in ecosystems and other complex systems. Are ecosystems and their components continuously distributed and do they adhere to scaling laws, or are they discontinuous and more complex than early models would have us believe? The resulting propositions over the structure of complex systems sparked an ongoing debate regarding the mechanisms generating discontinuities and the statistical methods used for their detection. This volume takes the view that ecosystems and other complex systems are inherently discontinuous and that such fields as ecology, economics, and urban studies greatly benefit from this paradigm shift. Contributors present evidence of the ubiquity of discontinuous distributions in ecological and social systems and how their analysis provides insight into complex phenomena. The book is divided into three sections. The first focuses on background material and contrasting views concerning the discontinuous organization of complex systems. The second discusses discontinuous patterns detected in a number of different systems and methods for detecting them, and the third touches on the potential significance of discontinuities in complex systems. Science is still dominated by a focus on power laws, but the contributors to this volume are convinced power laws often mask the interesting dynamics of systems and that those dynamics are best revealed by investigating deviations from assumed power law distributions. In 2008, a grand conference on resilience was held in Stockholm, hosting 600 participants from around the world. There are now three big centers established with resilience, the most recent one being the Stockholm Resilience Center, with others in Australia (an international coral reef center), Arizona State University's new sustainability center focusing on anthropology, and Canada's emerging social sciences and resilience center. Activity continues to flourish in Alaska, South Africa, and the Untied Kingdom, and a new center is forming in Uruguay.
Self-Organizing Systems
Author: F.Eugene Yates
Publisher: Springer Science & Business Media
ISBN: 1461308836
Category : Science
Languages : en
Pages : 658
Book Description
Technological systems become organized by commands from outside, as when human intentions lead to the building of structures or machines. But many nat ural systems become structured by their own internal processes: these are the self organizing systems, and the emergence of order within them is a complex phe nomenon that intrigues scientists from all disciplines. Unfortunately, complexity is ill-defined. Global explanatory constructs, such as cybernetics or general sys tems theory, which were intended to cope with complexity, produced instead a grandiosity that has now, mercifully, run its course and died. Most of us have become wary of proposals for an "integrated, systems approach" to complex matters; yet we must come to grips with complexity some how. Now is a good time to reexamine complex systems to determine whether or not various scientific specialties can discover common principles or properties in them. If they do, then a fresh, multidisciplinary attack on the difficulties would be a valid scientific task. Believing that complexity is a proper scientific issue, and that self-organizing systems are the foremost example, R. Tomovic, Z. Damjanovic, and I arranged a conference (August 26-September 1, 1979) in Dubrovnik, Yugoslavia, to address self-organizing systems. We invited 30 participants from seven countries. Included were biologists, geologists, physicists, chemists, mathematicians, bio physicists, and control engineers. Participants were asked not to bring manu scripts, but, rather, to present positions on an assigned topic. Any writing would be done after the conference, when the writers could benefit from their experi ences there.
Publisher: Springer Science & Business Media
ISBN: 1461308836
Category : Science
Languages : en
Pages : 658
Book Description
Technological systems become organized by commands from outside, as when human intentions lead to the building of structures or machines. But many nat ural systems become structured by their own internal processes: these are the self organizing systems, and the emergence of order within them is a complex phe nomenon that intrigues scientists from all disciplines. Unfortunately, complexity is ill-defined. Global explanatory constructs, such as cybernetics or general sys tems theory, which were intended to cope with complexity, produced instead a grandiosity that has now, mercifully, run its course and died. Most of us have become wary of proposals for an "integrated, systems approach" to complex matters; yet we must come to grips with complexity some how. Now is a good time to reexamine complex systems to determine whether or not various scientific specialties can discover common principles or properties in them. If they do, then a fresh, multidisciplinary attack on the difficulties would be a valid scientific task. Believing that complexity is a proper scientific issue, and that self-organizing systems are the foremost example, R. Tomovic, Z. Damjanovic, and I arranged a conference (August 26-September 1, 1979) in Dubrovnik, Yugoslavia, to address self-organizing systems. We invited 30 participants from seven countries. Included were biologists, geologists, physicists, chemists, mathematicians, bio physicists, and control engineers. Participants were asked not to bring manu scripts, but, rather, to present positions on an assigned topic. Any writing would be done after the conference, when the writers could benefit from their experi ences there.
The Origins of Order
Author: Stuart A. Kauffman
Publisher: Oxford University Press
ISBN: 0199826676
Category : Science
Languages : en
Pages : 958
Book Description
Stuart Kauffman here presents a brilliant new paradigm for evolutionary biology, one that extends the basic concepts of Darwinian evolution to accommodate recent findings and perspectives from the fields of biology, physics, chemistry and mathematics. The book drives to the heart of the exciting debate on the origins of life and maintenance of order in complex biological systems. It focuses on the concept of self-organization: the spontaneous emergence of order that is widely observed throughout nature Kauffman argues that self-organization plays an important role in the Darwinian process of natural selection. Yet until now no systematic effort has been made to incorporate the concept of self-organization into evolutionary theory. The construction requirements which permit complex systems to adapt are poorly understood, as is the extent to which selection itself can yield systems able to adapt more successfully. This book explores these themes. It shows how complex systems, contrary to expectations, can spontaneously exhibit stunning degrees of order, and how this order, in turn, is essential for understanding the emergence and development of life on Earth. Topics include the new biotechnology of applied molecular evolution, with its important implications for developing new drugs and vaccines; the balance between order and chaos observed in many naturally occurring systems; new insights concerning the predictive power of statistical mechanics in biology; and other major issues. Indeed, the approaches investigated here may prove to be the new center around which biological science itself will evolve. The work is written for all those interested in the cutting edge of research in the life sciences.
Publisher: Oxford University Press
ISBN: 0199826676
Category : Science
Languages : en
Pages : 958
Book Description
Stuart Kauffman here presents a brilliant new paradigm for evolutionary biology, one that extends the basic concepts of Darwinian evolution to accommodate recent findings and perspectives from the fields of biology, physics, chemistry and mathematics. The book drives to the heart of the exciting debate on the origins of life and maintenance of order in complex biological systems. It focuses on the concept of self-organization: the spontaneous emergence of order that is widely observed throughout nature Kauffman argues that self-organization plays an important role in the Darwinian process of natural selection. Yet until now no systematic effort has been made to incorporate the concept of self-organization into evolutionary theory. The construction requirements which permit complex systems to adapt are poorly understood, as is the extent to which selection itself can yield systems able to adapt more successfully. This book explores these themes. It shows how complex systems, contrary to expectations, can spontaneously exhibit stunning degrees of order, and how this order, in turn, is essential for understanding the emergence and development of life on Earth. Topics include the new biotechnology of applied molecular evolution, with its important implications for developing new drugs and vaccines; the balance between order and chaos observed in many naturally occurring systems; new insights concerning the predictive power of statistical mechanics in biology; and other major issues. Indeed, the approaches investigated here may prove to be the new center around which biological science itself will evolve. The work is written for all those interested in the cutting edge of research in the life sciences.
Complex Ecology
Author: Charles G. Curtin
Publisher: Cambridge University Press
ISBN: 1108244335
Category : Nature
Languages : en
Pages : 595
Book Description
From climate change to species extinction, humanity is confronted with an increasing array of societal and environmental challenges that defy simple quantifiable solutions. Complexity-based ecology provides a new paradigm for ecologists and conservationists keen to embrace the uncertainty that is pressed upon us. This book presents key research papers chosen by some sixty scholars from various continents, across a diverse span of sub-disciplines. The papers are set alongside first person commentary from many of the seminal voices involved, offering unprecedented access to experts' viewpoints. The works assembled also shed light on the process of science in general, showing how the shifting of wider perspectives allows for new ideas to take hold. Ideal for undergraduate and advanced students of ecology and conservation, their educators and those working across allied fields, this is the first book of its kind to focus on complexity-based approaches and provides a benchmark for future collected volumes.
Publisher: Cambridge University Press
ISBN: 1108244335
Category : Nature
Languages : en
Pages : 595
Book Description
From climate change to species extinction, humanity is confronted with an increasing array of societal and environmental challenges that defy simple quantifiable solutions. Complexity-based ecology provides a new paradigm for ecologists and conservationists keen to embrace the uncertainty that is pressed upon us. This book presents key research papers chosen by some sixty scholars from various continents, across a diverse span of sub-disciplines. The papers are set alongside first person commentary from many of the seminal voices involved, offering unprecedented access to experts' viewpoints. The works assembled also shed light on the process of science in general, showing how the shifting of wider perspectives allows for new ideas to take hold. Ideal for undergraduate and advanced students of ecology and conservation, their educators and those working across allied fields, this is the first book of its kind to focus on complexity-based approaches and provides a benchmark for future collected volumes.
At Home in the Universe
Author: Stuart Kauffman
Publisher: Oxford University Press
ISBN: 019984030X
Category : Science
Languages : en
Pages : 335
Book Description
A major scientific revolution has begun, a new paradigm that rivals Darwin's theory in importance. At its heart is the discovery of the order that lies deep within the most complex of systems, from the origin of life, to the workings of giant corporations, to the rise and fall of great civilizations. And more than anyone else, this revolution is the work of one man, Stuart Kauffman, a MacArthur Fellow and visionary pioneer of the new science of complexity. Now, in At Home in the Universe, Kauffman brilliantly weaves together the excitement of intellectual discovery and a fertile mix of insights to give the general reader a fascinating look at this new science--and at the forces for order that lie at the edge of chaos. We all know of instances of spontaneous order in nature--an oil droplet in water forms a sphere, snowflakes have a six-fold symmetry. What we are only now discovering, Kauffman says, is that the range of spontaneous order is enormously greater than we had supposed. Indeed, self-organization is a great undiscovered principle of nature. But how does this spontaneous order arise? Kauffman contends that complexity itself triggers self-organization, or what he calls "order for free," that if enough different molecules pass a certain threshold of complexity, they begin to self-organize into a new entity--a living cell. Kauffman uses the analogy of a thousand buttons on a rug--join two buttons randomly with thread, then another two, and so on. At first, you have isolated pairs; later, small clusters; but suddenly at around the 500th repetition, a remarkable transformation occurs--much like the phase transition when water abruptly turns to ice--and the buttons link up in one giant network. Likewise, life may have originated when the mix of different molecules in the primordial soup passed a certain level of complexity and self-organized into living entities (if so, then life is not a highly improbable chance event, but almost inevitable). Kauffman uses the basic insight of "order for free" to illuminate a staggering range of phenomena. We see how a single-celled embryo can grow to a highly complex organism with over two hundred different cell types. We learn how the science of complexity extends Darwin's theory of evolution by natural selection: that self-organization, selection, and chance are the engines of the biosphere. And we gain insights into biotechnology, the stunning magic of the new frontier of genetic engineering--generating trillions of novel molecules to find new drugs, vaccines, enzymes, biosensors, and more. Indeed, Kauffman shows that ecosystems, economic systems, and even cultural systems may all evolve according to similar general laws, that tissues and terra cotta evolve in similar ways. And finally, there is a profoundly spiritual element to Kauffman's thought. If, as he argues, life were bound to arise, not as an incalculably improbable accident, but as an expected fulfillment of the natural order, then we truly are at home in the universe. Kauffman's earlier volume, The Origins of Order, written for specialists, received lavish praise. Stephen Jay Gould called it "a landmark and a classic." And Nobel Laureate Philip Anderson wrote that "there are few people in this world who ever ask the right questions of science, and they are the ones who affect its future most profoundly. Stuart Kauffman is one of these." In At Home in the Universe, this visionary thinker takes you along as he explores new insights into the nature of life.
Publisher: Oxford University Press
ISBN: 019984030X
Category : Science
Languages : en
Pages : 335
Book Description
A major scientific revolution has begun, a new paradigm that rivals Darwin's theory in importance. At its heart is the discovery of the order that lies deep within the most complex of systems, from the origin of life, to the workings of giant corporations, to the rise and fall of great civilizations. And more than anyone else, this revolution is the work of one man, Stuart Kauffman, a MacArthur Fellow and visionary pioneer of the new science of complexity. Now, in At Home in the Universe, Kauffman brilliantly weaves together the excitement of intellectual discovery and a fertile mix of insights to give the general reader a fascinating look at this new science--and at the forces for order that lie at the edge of chaos. We all know of instances of spontaneous order in nature--an oil droplet in water forms a sphere, snowflakes have a six-fold symmetry. What we are only now discovering, Kauffman says, is that the range of spontaneous order is enormously greater than we had supposed. Indeed, self-organization is a great undiscovered principle of nature. But how does this spontaneous order arise? Kauffman contends that complexity itself triggers self-organization, or what he calls "order for free," that if enough different molecules pass a certain threshold of complexity, they begin to self-organize into a new entity--a living cell. Kauffman uses the analogy of a thousand buttons on a rug--join two buttons randomly with thread, then another two, and so on. At first, you have isolated pairs; later, small clusters; but suddenly at around the 500th repetition, a remarkable transformation occurs--much like the phase transition when water abruptly turns to ice--and the buttons link up in one giant network. Likewise, life may have originated when the mix of different molecules in the primordial soup passed a certain level of complexity and self-organized into living entities (if so, then life is not a highly improbable chance event, but almost inevitable). Kauffman uses the basic insight of "order for free" to illuminate a staggering range of phenomena. We see how a single-celled embryo can grow to a highly complex organism with over two hundred different cell types. We learn how the science of complexity extends Darwin's theory of evolution by natural selection: that self-organization, selection, and chance are the engines of the biosphere. And we gain insights into biotechnology, the stunning magic of the new frontier of genetic engineering--generating trillions of novel molecules to find new drugs, vaccines, enzymes, biosensors, and more. Indeed, Kauffman shows that ecosystems, economic systems, and even cultural systems may all evolve according to similar general laws, that tissues and terra cotta evolve in similar ways. And finally, there is a profoundly spiritual element to Kauffman's thought. If, as he argues, life were bound to arise, not as an incalculably improbable accident, but as an expected fulfillment of the natural order, then we truly are at home in the universe. Kauffman's earlier volume, The Origins of Order, written for specialists, received lavish praise. Stephen Jay Gould called it "a landmark and a classic." And Nobel Laureate Philip Anderson wrote that "there are few people in this world who ever ask the right questions of science, and they are the ones who affect its future most profoundly. Stuart Kauffman is one of these." In At Home in the Universe, this visionary thinker takes you along as he explores new insights into the nature of life.
Understanding Complex Ecosystem Dynamics
Author: William S. Yackinous
Publisher: Academic Press
ISBN: 0128020636
Category : Science
Languages : en
Pages : 435
Book Description
Understanding Complex Ecosystem Dynamics: A Systems and Engineering Perspective takes a fresh, interdisciplinary perspective on complex system dynamics, beginning with a discussion of relevant systems and engineering skills and practices, including an explanation of the systems approach and its major elements. From this perspective, the author formulates an ecosystem dynamics functionality-based framework to guide ecological investigations. Next, because complex system theory (across many subject matter areas) is crucial to the work of this book, relevant network theory, nonlinear dynamics theory, cellular automata theory, and roughness (fractal) theory is covered in some detail. This material serves as an important resource as the book proceeds. In the context of all of the foregoing discussion and investigation, a view of the characteristics of ecological network dynamics is constructed. This view, in turn, is the basis for the central hypothesis of the book, i.e., ecological networks are ever-changing networks with propagation dynamics that are punctuated, local-to-global, and perhaps most importantly fractal. To analyze and fully test this hypothesis, an innovative ecological network dynamics model is defined, designed, and developed. The modeling approach, which seeks to emulate features of real-world ecological networks, does not make a priori assumptions about ecological network dynamics, but rather lets the dynamics develop as the model simulation runs. Model analysis results corroborate the central hypothesis. Additional important insights and principles are suggested by the model analysis results and by the other supporting investigations of this book – and can serve as a basis for going-forward complex system dynamics research, not only for ecological systems but for complex systems in general. - Provides a fresh interdisciplinary perspective, offers a broad integrated development, and contains many new ideas - Clearly explains the elements of the systems approach and applies them throughout the book - Takes on the challenging and open issues of complex system network dynamics - Develops and utilizes a new, innovative ecosystem dynamics modeling approach - Contains over 135 graphic illustrations to help the reader visualize and understand important concepts
Publisher: Academic Press
ISBN: 0128020636
Category : Science
Languages : en
Pages : 435
Book Description
Understanding Complex Ecosystem Dynamics: A Systems and Engineering Perspective takes a fresh, interdisciplinary perspective on complex system dynamics, beginning with a discussion of relevant systems and engineering skills and practices, including an explanation of the systems approach and its major elements. From this perspective, the author formulates an ecosystem dynamics functionality-based framework to guide ecological investigations. Next, because complex system theory (across many subject matter areas) is crucial to the work of this book, relevant network theory, nonlinear dynamics theory, cellular automata theory, and roughness (fractal) theory is covered in some detail. This material serves as an important resource as the book proceeds. In the context of all of the foregoing discussion and investigation, a view of the characteristics of ecological network dynamics is constructed. This view, in turn, is the basis for the central hypothesis of the book, i.e., ecological networks are ever-changing networks with propagation dynamics that are punctuated, local-to-global, and perhaps most importantly fractal. To analyze and fully test this hypothesis, an innovative ecological network dynamics model is defined, designed, and developed. The modeling approach, which seeks to emulate features of real-world ecological networks, does not make a priori assumptions about ecological network dynamics, but rather lets the dynamics develop as the model simulation runs. Model analysis results corroborate the central hypothesis. Additional important insights and principles are suggested by the model analysis results and by the other supporting investigations of this book – and can serve as a basis for going-forward complex system dynamics research, not only for ecological systems but for complex systems in general. - Provides a fresh interdisciplinary perspective, offers a broad integrated development, and contains many new ideas - Clearly explains the elements of the systems approach and applies them throughout the book - Takes on the challenging and open issues of complex system network dynamics - Develops and utilizes a new, innovative ecosystem dynamics modeling approach - Contains over 135 graphic illustrations to help the reader visualize and understand important concepts
Resilience and the Behavior of Large-Scale Systems
Author: Lance H. Gunderson
Publisher: Island Press
ISBN: 1610913132
Category : Nature
Languages : en
Pages : 313
Book Description
Scientists and researchers concerned with the behavior of large ecosystems have focused in recent years on the concept of "resilience." Traditional perspectives held that ecological systems exist close to a steady state and resilience is the ability of the system to return rapidly to that state following perturbation. However beginning with the work of C. S. Holling in the early 1970s, researchers began to look at conditions far from the steady state where instabilities can cause a system to shift into an entirely different regime of behavior, and where resilience is measured by the magnitude of disturbance that can be absorbed before the system is restructured. Resilience and the Behavior of Large-Scale Systems examines theories of resilience and change, offering readers a thorough understanding of how the properties of ecological resilience and human adaptability interact in complex, regional-scale systems. The book addresses the theoretical concepts of resilience and stability in large-scale ecosystems as well as the empirical application of those concepts in a diverse set of cases. In addition, it discusses the practical implications of the new theoretical approaches and their role in the sustainability of human-modified ecosystems. The book begins with a review of key properties of complex adaptive systems that contribute to overall resilience, including multiple equlibria, complexity, self-organization at multiple scales, and order; it also presents a set of mathematical metaphors to describe and deepen the reader's understanding of the ideas being discussed. Following the introduction are case studies that explore the biophysical dimensions of resilience in both terrestrial and aquatic systems and evaluate the propositions presented in the introductory chapters. The book concludes with a synthesis section that revisits propositions in light of the case studies, while an appendix presents a detailed account of the relationship between return times for a disturbed system and its resilienc. In addition to the editors, contributors include Stephen R. Carpenter, Carl Folke, C. S. Holling, Bengt-Owe Jansson, Donald Ludwig, Ariel Lugo, Tim R. McClanahan, Garry D. Peterson, and Brian H. Walker.
Publisher: Island Press
ISBN: 1610913132
Category : Nature
Languages : en
Pages : 313
Book Description
Scientists and researchers concerned with the behavior of large ecosystems have focused in recent years on the concept of "resilience." Traditional perspectives held that ecological systems exist close to a steady state and resilience is the ability of the system to return rapidly to that state following perturbation. However beginning with the work of C. S. Holling in the early 1970s, researchers began to look at conditions far from the steady state where instabilities can cause a system to shift into an entirely different regime of behavior, and where resilience is measured by the magnitude of disturbance that can be absorbed before the system is restructured. Resilience and the Behavior of Large-Scale Systems examines theories of resilience and change, offering readers a thorough understanding of how the properties of ecological resilience and human adaptability interact in complex, regional-scale systems. The book addresses the theoretical concepts of resilience and stability in large-scale ecosystems as well as the empirical application of those concepts in a diverse set of cases. In addition, it discusses the practical implications of the new theoretical approaches and their role in the sustainability of human-modified ecosystems. The book begins with a review of key properties of complex adaptive systems that contribute to overall resilience, including multiple equlibria, complexity, self-organization at multiple scales, and order; it also presents a set of mathematical metaphors to describe and deepen the reader's understanding of the ideas being discussed. Following the introduction are case studies that explore the biophysical dimensions of resilience in both terrestrial and aquatic systems and evaluate the propositions presented in the introductory chapters. The book concludes with a synthesis section that revisits propositions in light of the case studies, while an appendix presents a detailed account of the relationship between return times for a disturbed system and its resilienc. In addition to the editors, contributors include Stephen R. Carpenter, Carl Folke, C. S. Holling, Bengt-Owe Jansson, Donald Ludwig, Ariel Lugo, Tim R. McClanahan, Garry D. Peterson, and Brian H. Walker.
Self-Organization in Nonequilibrium Systems
Author: Gregoire Nicolis
Publisher: Wiley-VCH
ISBN:
Category : Reference
Languages : en
Pages : 520
Book Description
Membranes, Dissipative Structures, and Evolution Edited by G. Nicolis & R. Lefever Focuses on the problem of the emergence/maintenance of biological order at successively higher levels of complexity. Covers the spatiotemporal organization of simple biochemical networks; the formation of pluricellular or macromolecular assemblies; the evolution of these structures; and the functions of specific biological structures. Volume 29 in Advances in Chemical Physics Series, I. Prigogine & Stuart A. Rice, Editors. 1975 Theory and Applications of Molecular Paramagnetism Edited by E. A. Boudreaux & L. N. Mulay Comprehensively treats the basic theory of paramagnetic phenomena from both the classical and mechanical vantages. It examines the magnetic behavior of Lanthanide and Actinide elements as well as traditional transition metals. For each class of compounds, appropriate details of descriptive and mathematical theory are given before their applications. 1976 Theory and Aapplications of Molecular Diamagnetism Edited by L. N. Mulay & E. A. Boudreaux An invaluable reference for solving chemical problems in magnetics, magnetochemistry, and related areas where magnetic data are important, such as solid-state physics and optical spectroscopy. 1976
Publisher: Wiley-VCH
ISBN:
Category : Reference
Languages : en
Pages : 520
Book Description
Membranes, Dissipative Structures, and Evolution Edited by G. Nicolis & R. Lefever Focuses on the problem of the emergence/maintenance of biological order at successively higher levels of complexity. Covers the spatiotemporal organization of simple biochemical networks; the formation of pluricellular or macromolecular assemblies; the evolution of these structures; and the functions of specific biological structures. Volume 29 in Advances in Chemical Physics Series, I. Prigogine & Stuart A. Rice, Editors. 1975 Theory and Applications of Molecular Paramagnetism Edited by E. A. Boudreaux & L. N. Mulay Comprehensively treats the basic theory of paramagnetic phenomena from both the classical and mechanical vantages. It examines the magnetic behavior of Lanthanide and Actinide elements as well as traditional transition metals. For each class of compounds, appropriate details of descriptive and mathematical theory are given before their applications. 1976 Theory and Aapplications of Molecular Diamagnetism Edited by L. N. Mulay & E. A. Boudreaux An invaluable reference for solving chemical problems in magnetics, magnetochemistry, and related areas where magnetic data are important, such as solid-state physics and optical spectroscopy. 1976