Author: Trygve Gjedrem
Publisher: Springer Science & Business Media
ISBN: 9781402033414
Category : Science
Languages : en
Pages : 386
Book Description
Although aquaculture as a biological production system has a long history, systematic and efficient breeding programs to improve economically important traits in the farmed species have rarely been utilized until recently, except for salmonid species. This means that the majority of aquaculture production (more than 90 %) is based on genetically unimproved stocks. In farm animals the situation is vastly different: practically no terrestrial farm production is based on genetically unimproved and undomesticated populations. This difference between aquaculture and livestock production is in spite of the fact that the basic elements of breeding theory are the same for fish and shellfish as for farm animals. One possible reason for the difference is the complexity of reproductive biology in aquatic species, and special consideration needs to be taken in the design of breeding plans for these species. Since 1971 AKVAFORSK, has continuously carried out large scale breeding research projects with salmonid species, and during the latest 15 years also with a number of fresh water and marine species. Results from this work and the results from other institutions around the world have brought forward considerable knowledge, which make the development of efficient breeding programs feasible. The genetic improvement obtained in selection programs for fish and shellfish is remarkable and much higher than what has been achieved in terrestrial farm animals.
Selection and Breeding Programs in Aquaculture
Author: Trygve Gjedrem
Publisher: Springer Science & Business Media
ISBN: 9781402033414
Category : Science
Languages : en
Pages : 386
Book Description
Although aquaculture as a biological production system has a long history, systematic and efficient breeding programs to improve economically important traits in the farmed species have rarely been utilized until recently, except for salmonid species. This means that the majority of aquaculture production (more than 90 %) is based on genetically unimproved stocks. In farm animals the situation is vastly different: practically no terrestrial farm production is based on genetically unimproved and undomesticated populations. This difference between aquaculture and livestock production is in spite of the fact that the basic elements of breeding theory are the same for fish and shellfish as for farm animals. One possible reason for the difference is the complexity of reproductive biology in aquatic species, and special consideration needs to be taken in the design of breeding plans for these species. Since 1971 AKVAFORSK, has continuously carried out large scale breeding research projects with salmonid species, and during the latest 15 years also with a number of fresh water and marine species. Results from this work and the results from other institutions around the world have brought forward considerable knowledge, which make the development of efficient breeding programs feasible. The genetic improvement obtained in selection programs for fish and shellfish is remarkable and much higher than what has been achieved in terrestrial farm animals.
Publisher: Springer Science & Business Media
ISBN: 9781402033414
Category : Science
Languages : en
Pages : 386
Book Description
Although aquaculture as a biological production system has a long history, systematic and efficient breeding programs to improve economically important traits in the farmed species have rarely been utilized until recently, except for salmonid species. This means that the majority of aquaculture production (more than 90 %) is based on genetically unimproved stocks. In farm animals the situation is vastly different: practically no terrestrial farm production is based on genetically unimproved and undomesticated populations. This difference between aquaculture and livestock production is in spite of the fact that the basic elements of breeding theory are the same for fish and shellfish as for farm animals. One possible reason for the difference is the complexity of reproductive biology in aquatic species, and special consideration needs to be taken in the design of breeding plans for these species. Since 1971 AKVAFORSK, has continuously carried out large scale breeding research projects with salmonid species, and during the latest 15 years also with a number of fresh water and marine species. Results from this work and the results from other institutions around the world have brought forward considerable knowledge, which make the development of efficient breeding programs feasible. The genetic improvement obtained in selection programs for fish and shellfish is remarkable and much higher than what has been achieved in terrestrial farm animals.
Selective Breeding in Aquaculture: an Introduction
Author: Trygve Gjedrem
Publisher: Springer Science & Business Media
ISBN: 9048127734
Category : Science
Languages : en
Pages : 221
Book Description
The foundation of quantitative genetics theory was developed during the last century and facilitated many successful breeding programs for cultivated plants and t- restrial livestock. The results have been almost universally impressive, and today nearly all agricultural production utilises genetically improved seed and animals. The aquaculture industry can learn a great deal from these experiences, because the basic theory behind selective breeding is the same for all species. The ?rst published selection experiments in aquaculture started in 1920 s to improve disease resistance in ?sh, but it was not before the 1970 s that the ?rst family based breeding program was initiated for Atlantic salmon in Norway by AKVAFORSK. Unfortunately, the subsequent implementation of selective breeding on a wider scale in aquaculture has been slow, and despite the dramatic gains that have been demonstrated in a number of species, less than 10% of world aquaculture production is currently based on improved stocks. For the long-term sustainability of aquaculture production, there is an urgent need to develop and implement e- cient breeding programs for all species under commercial production. The ability for aquaculture to successfully meet the demands of an ever increasing human p- ulation, will rely on genetically improved stocks that utilise feed, water and land resources in an ef?cient way. Technological advances like genome sequences of aquaculture species, and advanced molecular methods means that there are new and exciting prospects for building on these well-established methods into the future.
Publisher: Springer Science & Business Media
ISBN: 9048127734
Category : Science
Languages : en
Pages : 221
Book Description
The foundation of quantitative genetics theory was developed during the last century and facilitated many successful breeding programs for cultivated plants and t- restrial livestock. The results have been almost universally impressive, and today nearly all agricultural production utilises genetically improved seed and animals. The aquaculture industry can learn a great deal from these experiences, because the basic theory behind selective breeding is the same for all species. The ?rst published selection experiments in aquaculture started in 1920 s to improve disease resistance in ?sh, but it was not before the 1970 s that the ?rst family based breeding program was initiated for Atlantic salmon in Norway by AKVAFORSK. Unfortunately, the subsequent implementation of selective breeding on a wider scale in aquaculture has been slow, and despite the dramatic gains that have been demonstrated in a number of species, less than 10% of world aquaculture production is currently based on improved stocks. For the long-term sustainability of aquaculture production, there is an urgent need to develop and implement e- cient breeding programs for all species under commercial production. The ability for aquaculture to successfully meet the demands of an ever increasing human p- ulation, will rely on genetically improved stocks that utilise feed, water and land resources in an ef?cient way. Technological advances like genome sequences of aquaculture species, and advanced molecular methods means that there are new and exciting prospects for building on these well-established methods into the future.
Genomics in Aquaculture
Author: Simon A MacKenzie
Publisher: Academic Press
ISBN: 0128016906
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
Genomics in Aquaculture is a concise, must-have reference that describes current advances within the field of genomics and their applications to aquaculture. Written in an accessible manner for anyone—non-specialists to experts alike—this book provides in-depth coverage of genomics spanning from genome sequencing, to transcriptomics and proteomics. It provides, for ease of learning, examples from key species most relevant to current intensive aquaculture practice. Its coverage of minority species that have a specific biological interest (e.g., Pleuronectiformes) makes this book useful for countries that are developing such species. It is a robust, practical resource that covers foundational, functional, and applied aspects of genomics in aquaculture, presenting the most current information in a field of research that is rapidly growing. - Provides the latest scientific methods and technologies to maximize efficiencies for healthy fish production, with summary tables for quick reference - Offers an extended glossary of technical and methodological terms to help readers better understand key biological concepts - Describes state-of-the-art technologies, such as transcriptomics and epigenomics, currently under development for future perspective of the field - Covers minority species that have a specific biological interest (e.g., Pleuronectiformes), making the book useful to countries developing such species
Publisher: Academic Press
ISBN: 0128016906
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
Genomics in Aquaculture is a concise, must-have reference that describes current advances within the field of genomics and their applications to aquaculture. Written in an accessible manner for anyone—non-specialists to experts alike—this book provides in-depth coverage of genomics spanning from genome sequencing, to transcriptomics and proteomics. It provides, for ease of learning, examples from key species most relevant to current intensive aquaculture practice. Its coverage of minority species that have a specific biological interest (e.g., Pleuronectiformes) makes this book useful for countries that are developing such species. It is a robust, practical resource that covers foundational, functional, and applied aspects of genomics in aquaculture, presenting the most current information in a field of research that is rapidly growing. - Provides the latest scientific methods and technologies to maximize efficiencies for healthy fish production, with summary tables for quick reference - Offers an extended glossary of technical and methodological terms to help readers better understand key biological concepts - Describes state-of-the-art technologies, such as transcriptomics and epigenomics, currently under development for future perspective of the field - Covers minority species that have a specific biological interest (e.g., Pleuronectiformes), making the book useful to countries developing such species
Genomics in Aquaculture to Better Understand Species Biology and Accelerate Genetic Progress
Author: José Manuel Yáñez
Publisher: Frontiers Media SA
ISBN: 2889199576
Category : Genetics
Languages : en
Pages : 153
Book Description
From a global perspective aquaculture is an activity related to food production with large potential for growth. Considering a continuously growing population, the efficiency and sustainability of this activity will be crucial to meet the needs of protein for human consumption in the near future. However, for continuous enhancement of the culture of both fish and shellfish there are still challenges to overcome, mostly related to the biology of the cultured species and their interaction with (increasingly changing) environmental factors. Examples of these challenges include early sexual maturation, feed meal replacement, immune response to infectious diseases and parasites, and temperature and salinity tolerance. Moreover, it is estimated that less than 10% of the total aquaculture production in the world is based on populations genetically improved by means of artificial selection. Thus, there is considerable room for implementing breeding schemes aimed at improving productive traits having significant economic impact. By far the most economically relevant trait is growth rate, which can be efficiently improved by conventional genetic selection (i.e. based on breeding values of selection candidates). However, there are other important traits that cannot be measured directly on selection candidates, such as resistance against infectious and parasitic agents and carcass quality traits (e.g. fillet yield and meat color). However, these traits can be more efficiently improved using molecular tools to assist breeding programs by means of marker-assisted selection, using a few markers explaining a high proportion of the trait variation, or genomic selection, using thousands of markers to estimate genomic breeding values. The development and implementation of new technologies applied to molecular biology and genomics, such as next-generation sequencing methods and high-throughput genotyping platforms, are allowing the rapid increase of availability of genomic resources in aquaculture species. These resources will provide powerful tools to the research community and will aid in the determination of the genetic factors involved in several biological aspects of aquaculture species. In this regard, it is important to establish discussion in terms of which strategies will be more efficient to solve the primary challenges that are affecting aquaculture systems around the world. The main objective of this Research Topic is to provide a forum to communicate recent research and implementation strategies in the use of genomics in aquaculture species with emphasis on (1) a better understanding of fish and shellfish biological processes having considerable impact on aquaculture systems; and (2) the efficient incorporation of molecular information into breeding programs to accelerate genetic progress of economically relevant traits.
Publisher: Frontiers Media SA
ISBN: 2889199576
Category : Genetics
Languages : en
Pages : 153
Book Description
From a global perspective aquaculture is an activity related to food production with large potential for growth. Considering a continuously growing population, the efficiency and sustainability of this activity will be crucial to meet the needs of protein for human consumption in the near future. However, for continuous enhancement of the culture of both fish and shellfish there are still challenges to overcome, mostly related to the biology of the cultured species and their interaction with (increasingly changing) environmental factors. Examples of these challenges include early sexual maturation, feed meal replacement, immune response to infectious diseases and parasites, and temperature and salinity tolerance. Moreover, it is estimated that less than 10% of the total aquaculture production in the world is based on populations genetically improved by means of artificial selection. Thus, there is considerable room for implementing breeding schemes aimed at improving productive traits having significant economic impact. By far the most economically relevant trait is growth rate, which can be efficiently improved by conventional genetic selection (i.e. based on breeding values of selection candidates). However, there are other important traits that cannot be measured directly on selection candidates, such as resistance against infectious and parasitic agents and carcass quality traits (e.g. fillet yield and meat color). However, these traits can be more efficiently improved using molecular tools to assist breeding programs by means of marker-assisted selection, using a few markers explaining a high proportion of the trait variation, or genomic selection, using thousands of markers to estimate genomic breeding values. The development and implementation of new technologies applied to molecular biology and genomics, such as next-generation sequencing methods and high-throughput genotyping platforms, are allowing the rapid increase of availability of genomic resources in aquaculture species. These resources will provide powerful tools to the research community and will aid in the determination of the genetic factors involved in several biological aspects of aquaculture species. In this regard, it is important to establish discussion in terms of which strategies will be more efficient to solve the primary challenges that are affecting aquaculture systems around the world. The main objective of this Research Topic is to provide a forum to communicate recent research and implementation strategies in the use of genomics in aquaculture species with emphasis on (1) a better understanding of fish and shellfish biological processes having considerable impact on aquaculture systems; and (2) the efficient incorporation of molecular information into breeding programs to accelerate genetic progress of economically relevant traits.
The State of the World’s Aquatic Genetic Resources for Food and Agriculture
Author: Food and Agriculture Organization of the United Nations
Publisher: Food & Agriculture Org.
ISBN: 9251316082
Category : Technology & Engineering
Languages : en
Pages : 291
Book Description
The conservation, sustainable use and development of aquatic genetic resources (AqGR) is critical to the future supply of fish. The State of the World’s Aquatic Genetic Resources for Food and Agriculture is the first ever global assessment of these resources, with the scope of this first Report being limited to cultured AqGR and their wild relatives, within national jurisdiction. The Report draws on 92 reports from FAO member countries and five specially commissioned thematic background studies. The reporting countries are responsible for 96 percent of global aquaculture production. The Report sets the context with a review of the state of world’s aquaculture and fisheries and includes overviews of the uses and exchanges of AqGR, the drivers and trends impacting AqGR and the extent of ex situ and in situ conservation efforts. The Report also investigates the roles of stakeholders in AqGR and the levels of activity in research, education, training and extension, and reviews national policies and the levels of regional and international cooperation on AqGR. Finally, needs and challenges are assessed in the context of the findings from the data collected from the countries. The Report represents a snapshot of the present status of AqGR and forms a valuable technical reference document, particularly where it presents standardized key terminology and concepts.
Publisher: Food & Agriculture Org.
ISBN: 9251316082
Category : Technology & Engineering
Languages : en
Pages : 291
Book Description
The conservation, sustainable use and development of aquatic genetic resources (AqGR) is critical to the future supply of fish. The State of the World’s Aquatic Genetic Resources for Food and Agriculture is the first ever global assessment of these resources, with the scope of this first Report being limited to cultured AqGR and their wild relatives, within national jurisdiction. The Report draws on 92 reports from FAO member countries and five specially commissioned thematic background studies. The reporting countries are responsible for 96 percent of global aquaculture production. The Report sets the context with a review of the state of world’s aquaculture and fisheries and includes overviews of the uses and exchanges of AqGR, the drivers and trends impacting AqGR and the extent of ex situ and in situ conservation efforts. The Report also investigates the roles of stakeholders in AqGR and the levels of activity in research, education, training and extension, and reviews national policies and the levels of regional and international cooperation on AqGR. Finally, needs and challenges are assessed in the context of the findings from the data collected from the countries. The Report represents a snapshot of the present status of AqGR and forms a valuable technical reference document, particularly where it presents standardized key terminology and concepts.
Bioinformatics in Aquaculture
Author: Zhanjiang (John) Liu
Publisher: John Wiley & Sons
ISBN: 1118782356
Category : Science
Languages : en
Pages : 605
Book Description
Bioinformatics derives knowledge from computer analysis of biological data. In particular, genomic and transcriptomic datasets are processed, analysed and, whenever possible, associated with experimental results from various sources, to draw structural, organizational, and functional information relevant to biology. Research in bioinformatics includes method development for storage, retrieval, and analysis of the data. Bioinformatics in Aquaculture provides the most up to date reviews of next generation sequencing technologies, their applications in aquaculture, and principles and methodologies for the analysis of genomic and transcriptomic large datasets using bioinformatic methods, algorithm, and databases. The book is unique in providing guidance for the best software packages suitable for various analysis, providing detailed examples of using bioinformatic software and command lines in the context of real world experiments. This book is a vital tool for all those working in genomics, molecular biology, biochemistry and genetics related to aquaculture, and computational and biological sciences.
Publisher: John Wiley & Sons
ISBN: 1118782356
Category : Science
Languages : en
Pages : 605
Book Description
Bioinformatics derives knowledge from computer analysis of biological data. In particular, genomic and transcriptomic datasets are processed, analysed and, whenever possible, associated with experimental results from various sources, to draw structural, organizational, and functional information relevant to biology. Research in bioinformatics includes method development for storage, retrieval, and analysis of the data. Bioinformatics in Aquaculture provides the most up to date reviews of next generation sequencing technologies, their applications in aquaculture, and principles and methodologies for the analysis of genomic and transcriptomic large datasets using bioinformatic methods, algorithm, and databases. The book is unique in providing guidance for the best software packages suitable for various analysis, providing detailed examples of using bioinformatic software and command lines in the context of real world experiments. This book is a vital tool for all those working in genomics, molecular biology, biochemistry and genetics related to aquaculture, and computational and biological sciences.
Aquaculture and Fisheries Biotechnology
Author: Rex A. Dunham
Publisher: CABI
ISBN: 1789243440
Category : Technology & Engineering
Languages : en
Pages : 644
Book Description
The genetic improvement of fish for aquaculture and related fisheries has seen huge advances over recent years. Building upon the previous two editions of Aquaculture and Fisheries Biotechnology: Genetic Approaches, this 3rd edition offers a presentation of traditional selective breeding, modern genetic biotechnology, genomics, gene transfer and gene editing, and the latest developments in genetic biotechnology such as epigenetics, xenogenesis and genome-wide association study coupled with commercial application, the impact of government regulation and expectations for the future. It provides a firm grounding in relevant aspects of classical genetics, before focusing on particular aspects such as sex reversal and breeding as applied in aquaculture and fisheries. It also explores how more recent molecular genetics, genomics and biotechnology techniques can be used and combined in improvement programmes for fish and aquaculture species. A glossary explains the latest terminology used in biotechnology and genetics. This book will be useful for research scientists and students in marine biotechnology, aquaculture biotechnology, and fish genetics and breeding.
Publisher: CABI
ISBN: 1789243440
Category : Technology & Engineering
Languages : en
Pages : 644
Book Description
The genetic improvement of fish for aquaculture and related fisheries has seen huge advances over recent years. Building upon the previous two editions of Aquaculture and Fisheries Biotechnology: Genetic Approaches, this 3rd edition offers a presentation of traditional selective breeding, modern genetic biotechnology, genomics, gene transfer and gene editing, and the latest developments in genetic biotechnology such as epigenetics, xenogenesis and genome-wide association study coupled with commercial application, the impact of government regulation and expectations for the future. It provides a firm grounding in relevant aspects of classical genetics, before focusing on particular aspects such as sex reversal and breeding as applied in aquaculture and fisheries. It also explores how more recent molecular genetics, genomics and biotechnology techniques can be used and combined in improvement programmes for fish and aquaculture species. A glossary explains the latest terminology used in biotechnology and genetics. This book will be useful for research scientists and students in marine biotechnology, aquaculture biotechnology, and fish genetics and breeding.
Induced Fish Breeding
Author: Nihar Ranjan Chattopadhyay
Publisher: Academic Press
ISBN: 012801847X
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
Induced Fish Breeding: A Practical Guide for Hatcheries takes a successive approach to explaining the use of breeding technology with proven scientific methods. It provides real-life examples for the purpose of maximizing fish and seed production to support overall sustainability in aquaculture. It is a concise reference to understanding the latest developments in the field, useful for anyone who is involved in fisheries or hatchery management as well as researchers and students who need to understand the technology. A practice originally developed to produce quality seed in captivity, induced breeding has made great strides in fish populations for India. The book offers a practical and succinct overview—from existing methods and operations to recent trends and their impacts on aquaculture for the future. - Provides detailed information about empirical breeding practices like mixed spawning and indiscriminate hybridization - Presents the environmental and hormonal influence on maturation and spawning of fish with real-life fish breeding examples from around the world - Includes step-by-step scientific measures to help solve problems arising from common fish-farming mistakes - Provides real-life examples for the purpose of maximizing fish and seed production to support overall sustainability in aquaculture
Publisher: Academic Press
ISBN: 012801847X
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
Induced Fish Breeding: A Practical Guide for Hatcheries takes a successive approach to explaining the use of breeding technology with proven scientific methods. It provides real-life examples for the purpose of maximizing fish and seed production to support overall sustainability in aquaculture. It is a concise reference to understanding the latest developments in the field, useful for anyone who is involved in fisheries or hatchery management as well as researchers and students who need to understand the technology. A practice originally developed to produce quality seed in captivity, induced breeding has made great strides in fish populations for India. The book offers a practical and succinct overview—from existing methods and operations to recent trends and their impacts on aquaculture for the future. - Provides detailed information about empirical breeding practices like mixed spawning and indiscriminate hybridization - Presents the environmental and hormonal influence on maturation and spawning of fish with real-life fish breeding examples from around the world - Includes step-by-step scientific measures to help solve problems arising from common fish-farming mistakes - Provides real-life examples for the purpose of maximizing fish and seed production to support overall sustainability in aquaculture
Aquaculture Genome Technologies
Author: Zhanjiang (John) Liu
Publisher: John Wiley & Sons
ISBN: 0470276339
Category : Technology & Engineering
Languages : en
Pages : 579
Book Description
Genomics is a rapidly growing scientific field with applications ranging from improved disease resistance to increased rate of growth. Aquaculture Genome Technologies comprehensively covers the field of genomics and its applications to the aquaculture industry. This volume looks to bridge the gap between a basic understanding of genomic technology to its practical use in the aquaculture industry.
Publisher: John Wiley & Sons
ISBN: 0470276339
Category : Technology & Engineering
Languages : en
Pages : 579
Book Description
Genomics is a rapidly growing scientific field with applications ranging from improved disease resistance to increased rate of growth. Aquaculture Genome Technologies comprehensively covers the field of genomics and its applications to the aquaculture industry. This volume looks to bridge the gap between a basic understanding of genomic technology to its practical use in the aquaculture industry.
Inbreeding and Brood Stock Management
Author: Douglas Tave
Publisher: Food & Agriculture Org.
ISBN: 9789251043400
Category : Business & Economics
Languages : en
Pages : 138
Book Description
A manual dealing primarily with the problems caused by unwanted inbreeding in cultured fish populations, describing management techniques for preventing or minimising inbreeding, and also how inbreeding can be used to improve captive populations of fish
Publisher: Food & Agriculture Org.
ISBN: 9789251043400
Category : Business & Economics
Languages : en
Pages : 138
Book Description
A manual dealing primarily with the problems caused by unwanted inbreeding in cultured fish populations, describing management techniques for preventing or minimising inbreeding, and also how inbreeding can be used to improve captive populations of fish