Seismic Fragility Analysis and Loss Estimation for Concrete Structures

Seismic Fragility Analysis and Loss Estimation for Concrete Structures PDF Author: Jong Wha Bai
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The main objective of this study is to develop a methodology to assess seismic vulnerability of concrete structures and to estimate direct losses related to structural damage due to future seismic events. This dissertation contains several important components including development of more detailed demand models to enhance accuracy of fragility relationships and development of a damage assessment framework to account for uncertainties. This study focuses on concrete structures in the Mid-America region where a substantial seismic risk exists with potential high intensity earthquakes in this geographic region. The most common types of concrete structures in this area are identified based on the building inventory data and reinforced concrete (RC) frame buildings and tilt-up concrete buildings are selected as case study buildings for further analysis. Using synthetic ground motion records, the structural behavior of the representative case study buildings is analyzed through nonlinear time history analyses. The seismic performance of the case study buildings is evaluated to describe the structural behavior under ground motions. Using more detailed demand models and the corresponding capacity limits, analytical fragility curves are developed based on appropriate failure mechanisms for different structural parameters including different RC frame building heights and different aspect ratios for tilt-up concrete structures. A probabilistic methodology is used to estimate the seismic vulnerability of the case study buildings reflecting the uncertainties in the structural demand and capacity, analytical modeling, and the information used for structural loss estimation. To estimate structural losses, a set of damage states and the corresponding probabilistic framework to map the fragility and the damage state are proposed. Finally, scenario-based assessments are conducted to demonstrate the proposed methodology. Results show that the proposed methodology is successful to evaluate seismic vulnerability of concrete structures and effective in quantifying the uncertainties in the loss estimation process.

Encyclopedia of Earthquake Engineering

Encyclopedia of Earthquake Engineering PDF Author: Michael Beer
Publisher: Springer
ISBN: 9783642353437
Category : Technology & Engineering
Languages : en
Pages : 3953

Get Book Here

Book Description
The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 300 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well informed without needing to deal with the details of specialist understanding. The encyclopedia’s content provides technically-inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encyclopedia also aims to provide cross-disciplinary and cross-domain information to domain-experts. This is the first single reference encyclopedia of this breadth and scope that brings together the science, engineering and technological aspects of earthquakes and structures.

Seismic Fragility Assessment for Buildings due to Earthquake Excitation

Seismic Fragility Assessment for Buildings due to Earthquake Excitation PDF Author: FADZLI MOHAMED NAZRI
Publisher: Springer
ISBN: 981107125X
Category : Science
Languages : en
Pages : 121

Get Book Here

Book Description
This book presents a simplified approach to earthquake engineering by developing the fragility curve for regular and irregular moment-resisting frames based on different types of structural material, height, and ground motion records. It examines six sets of concrete and steel frames, which vary in terms of their height (3-, 6- and 9-storey) and include regular and irregular frames. Each structure frame was designed based on Eurocode 2 and 3 with the aid of Eurocode 8 for earthquake loading. The SAP2000 software was used as the main tool for the pushover analysis and incremental dynamic analysis. Readers are first provided with background information on the development of nonlinear analysis in earthquake engineering. Subsequently, each chapter begins with a detailed explanation of the collapse of the structures and the application in nonlinear analysis. As such, the book will greatly benefit students from both public and private institutions of higher, particularly those who are dealing with the subject of earthquake engineering for the first time. It also offers a valuable guide for Civil Engineering practitioners and researchers who have an interest in structural and earthquake engineering.

Fundamentals of Earthquake Engineering

Fundamentals of Earthquake Engineering PDF Author: Amr S. Elnashai
Publisher: John Wiley & Sons
ISBN: 1118700473
Category : Science
Languages : en
Pages : 493

Get Book Here

Book Description
Fundamentals of Earthquake Engineering: From Source to Fragility, Second Edition combines aspects of engineering seismology, structural and geotechnical earthquake engineering to assemble the vital components required for a deep understanding of response of structures to earthquake ground motion, from the seismic source to the evaluation of actions and deformation required for design, and culminating with probabilistic fragility analysis that applies to individual as well as groups of buildings. Basic concepts for accounting for the effects of soil-structure interaction effects in seismic design and assessment are also provided in this second edition. The nature of earthquake risk assessment is inherently multi-disciplinary. Whereas this book addresses only structural safety assessment and design, the problem is cast in its appropriate context by relating structural damage states to societal consequences and expectations, through the fundamental response quantities of stiffness, strength and ductility. This new edition includes material on the nature of earthquake sources and mechanisms, various methods for the characterization of earthquake input motion, effects of soil-structure interaction, damage observed in reconnaissance missions, modeling of structures for the purposes of response simulation, definition of performance limit states, fragility relationships derivation, features and effects of underlying soil, structural and architectural systems for optimal seismic response, and action and deformation quantities suitable for design. Key features: Unified and novel approach: from source to fragility Clear conceptual framework for structural response analysis, earthquake input characterization, modelling of soil-structure interaction and derivation of fragility functions Theory and relevant practical applications are merged within each chapter Contains a new chapter on the derivation of fragility Accompanied by a website containing illustrative slides, problems with solutions and worked-through examples Fundamentals of Earthquake Engineering: From Source to Fragility, Second Edition is designed to support graduate teaching and learning, introduce practising structural and geotechnical engineers to earthquake analysis and design problems, as well as being a reference book for further studies.

Advances in Assessment and Modeling of Earthquake Loss

Advances in Assessment and Modeling of Earthquake Loss PDF Author: Sinan Akkar
Publisher: Springer Nature
ISBN: 3030688135
Category : Science
Languages : en
Pages : 315

Get Book Here

Book Description
This open access book originates from an international workshop organized by Turkish Natural Catastrophe Insurance Pool (TCIP) in November 2019 that gathered renown researchers from academia, representatives of leading international reinsurance and modeling companies as well as government agencies responsible of insurance pricing in Turkey. The book includes chapters related to post-earthquake damage assessment, the state-of-art and novel earthquake loss modeling, their implementation and implication in insurance pricing at national, regional and global levels, and the role of earthquake insurance in building resilient societies and fire following earthquakes. The rich context encompassed in the book makes it a valuable tool not only for professionals and researchers dealing with earthquake loss modeling but also for practitioners in the insurance and reinsurance industry.

Seismic Fragility Estimates for Corroded Reinforced Concrete Bridge Structures with Two-column Bents

Seismic Fragility Estimates for Corroded Reinforced Concrete Bridge Structures with Two-column Bents PDF Author: Jinquan Zhong
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
To assess the losses associated with future earthquakes, seismic vulnerability functions are commonly used to correlate the damage or loss of a structure to the level of seismic intensity. A common procedure in seismic vulnerability assessment is to estimate the seismic fragility, which is defined as the conditional probability that a structure fails to meet the specific performance level for given level of seismic intensity. This dissertation proposes a methodology to estimate the fragility of corroded reinforced concrete (RC) bridges with two-column bents subject to seismic excitation. Seismic fragility functions are first developed for the RC bridges with two-column bents. All available information from science/engineering laws, numerical analysis, laboratory experiments, and field measurements has been used to construct the proper form of the fragility functions. The fragility functions are formulated, at the individual column, bent, and bridge levels, in terms of the spectral acceleration and the ratio between the peak ground velocity and the peak ground acceleration. The developed fragility functions properly account for the prevailing uncertainties in fragility estimation. The probabilistic capacity and demand models are then combined with the probabilistic models for chloride-induced corrosion and the time-dependent corrosion rate. The fragility estimates for corroded RC bridges incorporates the uncertainties in the parameters of capacity and demand models, and the inexactness (or model error) in modeling the material deterioration, structural capacity, and seismic demands. The proposed methodology is illustrated by developing the fragility functions for an example RC bridge with 11 two-column bents representing current construction in California. The developed fragility functions provide valuable information to allocate and spend available funds for the design, maintenance, and retrofitting of structures and networks. This study regarding the vulnerability of corroding RC bridges will be of direct value to those making decisions about the condition assessment, residual life, and the ability of lifeline structures to withstand future seismic demands.

Seismic Design Aids for Nonlinear Analysis of Reinforced Concrete Structures

Seismic Design Aids for Nonlinear Analysis of Reinforced Concrete Structures PDF Author: Srinivasan Chandrasekaran
Publisher: CRC Press
ISBN: 1439809151
Category : Technology & Engineering
Languages : en
Pages : 268

Get Book Here

Book Description
Tools to Safeguard New Buildings and Assess Existing OnesNonlinear analysis methods such as static pushover are globally considered a reliable tool for seismic and structural assessment. But the accuracy of seismic capacity estimates-which can prevent catastrophic loss of life and astronomical damage repair costs-depends on the use of the correct b

SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk

SYNER-G: Typology Definition and Fragility Functions for Physical Elements at Seismic Risk PDF Author: K. Pitilakis
Publisher: Springer Science & Business Media
ISBN: 9400778724
Category : Science
Languages : en
Pages : 432

Get Book Here

Book Description
Fragility functions constitute an emerging tool for the probabilistic seismic risk assessment of buildings, infrastructures and lifeline systems. The work presented in this book is a partial product of a European Union funded research project SYNER-G (FP7 Theme 6: Environment) where existing knowledge has been reviewed in order to extract the most appropriate fragility functions for the vulnerability analysis and loss estimation of the majority of structures and civil works exposed to earthquake hazard. Results of other relevant European projects and international initiatives are also incorporated in the book. In several cases new fragility and vulnerability functions have been developed in order to better represent the specific characteristics of European elements at risk. Several European and non-European institutes and Universities collaborated efficiently to capitalize upon existing knowledge. State-of-the-art methods are described, existing fragility curves are reviewed and, where necessary, new ones are proposed for buildings, lifelines, transportation infrastructures as well as for utilities and critical facilities. Taxonomy and typology definitions are synthesized and the treatment of related uncertainties is discussed. A fragility function manager tool and fragility functions in electronic form are provided on extras.springer.com. Audience The book aims to be a standard reference on the fragility functions to be used for the seismic vulnerability and probabilistic risk assessment of the most important elements at risk. It is of particular interest to earthquake engineers, scientists and researchers working in the field of earthquake risk assessment, as well as the insurance industry, civil protection and emergency management agencies.

Seismic Vulnerability of Structures

Seismic Vulnerability of Structures PDF Author: Philippe Gueguen
Publisher: John Wiley & Sons
ISBN: 1118604008
Category : Technology & Engineering
Languages : en
Pages : 372

Get Book Here

Book Description
This book is focused on the seismic vulnerability assessment methods, applied to existing buildings, describing several behaviors and new approaches for assessment on a large scale (urban area). It is clear that the majority of urban centers are composed of old buildings, designed according to concepts and rules that are inadequate to the seismic context. How to assess the vulnerability of existing buildings is an essential step to improve the management of seismic risk and its prevention policy. After some key reminders, this book describes seismic vulnerability methods applied to a large number of structures (buildings and bridges) in moderate (France, Switzerland) and strong seismic prone regions (Italy, Greece). Contents 1. Seismic Vulnerability of Existing Buildings: Observational and Mechanical Approaches for Application in Urban Areas, Sergio Lagomarsino and Serena Cattari. 2. Mechanical Methods: Fragility Curves and Pushover Analysis, Caterina Negulescu and Pierre Gehl. 3. Seismic Vulnerability and Loss Assessment for Buildings in Greece, Andreas J. Kappos. 4. Experimental Method: Contribution of Ambient Vibration Recordings to the Vulnerability Assessment, Clotaire Michel and Philippe Guéguen. 5. Numerical Model: Simplified Strategies for Vulnerability Seismic Assessment of Existing Structures, Cédric Desprez, Panagiotis Kotronis and Stéphane Grange. 6. Approach Based on the Risk Used in Switzerland, Pierino Lestuzzi. 7. Preliminary Evaluation of the Seismic Vulnerability of Existing Bridges, Denis Davi. About the Authors Philippe Guéguen is a Senior IFSTTAR Researcher at ISTerre, Joseph Fourier University Grenoble 1, France

Proceedings of the 2022 International Conference on Green Building, Civil Engineering and Smart City

Proceedings of the 2022 International Conference on Green Building, Civil Engineering and Smart City PDF Author: Wei Guo
Publisher: Springer Nature
ISBN: 9811952175
Category : Technology & Engineering
Languages : en
Pages : 1285

Get Book Here

Book Description
This book of the conference proceedings focuses on innovative design, technology and methods in the fields of building, civil engineering and smart city. It contains a large number of detailed design, construction and performance analysis charts, benefited to students, teachers, research scholars and other professionals in related fields. As well, readers will encounter new ideas for realizing more safe, intelligent and economical buildings.