Introduction to Safety and Reliability of Structures

Introduction to Safety and Reliability of Structures PDF Author: Jörg Schneider
Publisher: IABSE
ISBN: 3857480939
Category : Building failures
Languages : en
Pages : 115

Get Book

Book Description
Structural engineers devote all their effort to meeting society¿s expectations efficiently. Engineers and scientists work together to develop solutions to structural problems. Given that nothing is absolutely and eternally safe, the goal is to attain an acceptably small probability of failure for a structure. Reliability analysis is part of the science and practice of engineering today, not only with respect to the safety of structures, but also for questions of serviceability and other requirements of technical systems that might be impacted by some probability. The present volume takes a rather broad approach to the safety of structures and related topics. It treats the underlying concepts of risk and safety and introduces the reader to the main concepts and strategies for dealing with hazards. A chapter is devoted to the processing of data into information that is relevant for applying reliability theory. The two main chapters deal with the modelling of structures and with methods of reliability analysis. Another chapter focuses on problems related to establishing target reliabilities, assessing existing structures, and on effective strategies against human error. The Appendix supports the application of the methods proposed and refers readers to a number of related computer programs.

Introduction to Safety and Reliability of Structures

Introduction to Safety and Reliability of Structures PDF Author: Jörg Schneider
Publisher: IABSE
ISBN: 3857480939
Category : Building failures
Languages : en
Pages : 115

Get Book

Book Description
Structural engineers devote all their effort to meeting society¿s expectations efficiently. Engineers and scientists work together to develop solutions to structural problems. Given that nothing is absolutely and eternally safe, the goal is to attain an acceptably small probability of failure for a structure. Reliability analysis is part of the science and practice of engineering today, not only with respect to the safety of structures, but also for questions of serviceability and other requirements of technical systems that might be impacted by some probability. The present volume takes a rather broad approach to the safety of structures and related topics. It treats the underlying concepts of risk and safety and introduces the reader to the main concepts and strategies for dealing with hazards. A chapter is devoted to the processing of data into information that is relevant for applying reliability theory. The two main chapters deal with the modelling of structures and with methods of reliability analysis. Another chapter focuses on problems related to establishing target reliabilities, assessing existing structures, and on effective strategies against human error. The Appendix supports the application of the methods proposed and refers readers to a number of related computer programs.

Safety and Reliability of Existing Structures

Safety and Reliability of Existing Structures PDF Author: James Tsu-ping Yao
Publisher: Pitman Advanced Publishing Program
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 152

Get Book

Book Description


Safety and Reliability of Existing Structures

Safety and Reliability of Existing Structures PDF Author: J. T. Yao
Publisher: Halsted Press
ISBN: 9780470206201
Category :
Languages : en
Pages : 144

Get Book

Book Description


Safety and Reliability of Industrial Products, Systems and Structures

Safety and Reliability of Industrial Products, Systems and Structures PDF Author: Carlos Guedes Soares
Publisher: CRC Press
ISBN: 0203818652
Category : Technology & Engineering
Languages : en
Pages : 472

Get Book

Book Description
Safety and Reliability of Industrial Products, Systems and Structures deals with risk assessment, which is a fundamental support for decisions related to the design, construction, operation and maintenance of industrial products, systems and infrastructures. Risks are influenced by design decisions, by the process of construction of systems and inf

Structural Reliability Analysis and Prediction

Structural Reliability Analysis and Prediction PDF Author: Robert E. Melchers
Publisher: Wiley
ISBN: 9780471983248
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book

Book Description
Structural reliability has become a discipline of international interest, addressing issues such as the safety of buildings, bridges, towers and other structures. This book addresses the important issue of predicting the safety of structures at the design stage and also the safety of existing, perhaps deteriorating structures. Attention is focused on the development and definition of limit states such as serviceability and ultimate strength, the definition of failure and the various models which might be used to describe strength and loading. Much consideration is given to problem formulation and to the various techniques which can be applied to problem solution. These include the First Order Second Moment method and their derivatives, as well as various Monte Carlo tchniques. Each of these are described in considerable detail and example applications are given. Structural systems are also described, as is the effect of time on reliability estimation, and on the development of design code rules on the basis of limit state principles as under-pinned by probability theory. Furthermore, procedures for the reliability estimation of existing structures are also included. The book emphasises concepts and applications, built up from basic principles and avoids undue mathematical rigour. It presents an accesible and unified account of the theory and techniques for the analysis of the reliability of engineering structures using probability theory. A balanced view of the subject is offered here not only for newcomers, but also for the more specialist reader, such as senior undergraduate and post-graduate students and practising engineers in civil, structural, geotechnical and mechanical engineering.

Safety and performance concept. Reliability assessment of concrete structures

Safety and performance concept. Reliability assessment of concrete structures PDF Author: fib Fédération internationale du béton
Publisher: FIB - Féd. Int. du Béton
ISBN: 2883941262
Category : Technology & Engineering
Languages : en
Pages : 375

Get Book

Book Description
Concrete structures have been built for more than 100 years. At first, reinforced concrete was used for buildings and bridges, even for those with large spans. Lack of methods for structural analysis led to conservative and reliable design. Application of prestressed concrete started in the 40s and strongly developed in the 60s. The spans of bridges and other structures like halls, industrial structures, stands, etc. grew significantly larger. At that time, the knowledge of material behaviour, durability and overall structural performance was substantially less developed than it is today. In many countries statically determined systems with a fragile behavior were designed for cast in situ as well as precast structures. Lack of redundancy resulted in a low level of robustness in structural systems. In addition, the technical level of individual technologies (e.g. grouting of prestressed cables) was lower than it is today. The number of concrete structures, including prestressed ones, is extremely high. Over time and with increased loading, the necessity of maintaining safety and performance parameters is impossible without careful maintenance, smaller interventions, strengthening and even larger reconstructions. Although some claim that unsatisfactory structures should be replaced by new ones, it is often impossible, as authorities, in general, have only limited resources. Most structures have to remain in service, probably even longer than initially expected. In order to keep the existing concrete structures in an acceptable condition, the development of methods for monitoring, inspection and assessment, structural identification, nonlinear analysis, life cycle evaluation and safety and prediction of the future behaviour, etc. is necessary. The scatter of individual input parameters must be considered as a whole. This requires probabilistic approaches to individual partial problems and to the overall analysis. The members of the fib Task Group 2.8 “Safety and performance concepts” wrote, on the basis of the actual knowledge and experience, a comprehensive document that provides crucial knowledge for existing structures, which is also applicable to new structures. This guide to good practice is divided into 10 basic chapters dealing with individual issues that are critical for activities associated with preferably existing concrete structures. Bulletin 86 starts with the specification of the performance-based requirements during the entire lifecycle. The risk issues are described in chapter two. An extensive part is devoted to structural reliability, including practical engineering approaches and reliability assessment of existing structures. Safety concepts for design consider the lifetime of structures and summarise safety formats from simple partial safety factors to develop approaches suitable for application in sophisticated, probabilistic, non-linear analyses. Testing for design and the determination of design values from the tests is an extremely important issue. This is especially true for the evaluation of existing structures. Inspection and monitoring of existing structures are essential for maintenance, for the prediction of remaining service life and for the planning of interventions. Chapter nine presents probabilistically-based models for material degradation processes. Finally, case studies are presented in chapter ten. The results of the concrete structures monitoring as well as their application for assessment and prediction of their future behaviour are shown. The risk analysis of highway bridges was based on extensive monitoring and numerical evaluation programs. Case studies perfectly illustrate the application of the methods presented in the Bulletin. The information provided in this guide is very useful for practitioners and scientists. It provides the reader with general procedures, from the specification of requirements, monitoring, assessment to the prediction of the structures’ lifecycles. However, one must have a sufficiently large amount of experimental and other data (e.g. construction experience) in order to use these methods correctly. This data finally allows for a statistical evaluation. As it is shown in case studies, extensive monitoring programs are necessary. The publication of this guide and other documents developed within the fib will hopefully help convince the authorities responsible for safe and fluent traffic on bridges and other structures that the costs spent in monitoring are first rather small, and second, they will repay in the form of a serious assessment providing necessary information for decision about maintenance and future of important structures.

Report 32: Probabilistic Assessment of Existing Structures - A publication for the Joint Committee on Structural Safety (JCSS)

Report 32: Probabilistic Assessment of Existing Structures - A publication for the Joint Committee on Structural Safety (JCSS) PDF Author: Dimitris Diamantidis
Publisher: RILEM Publications
ISBN: 9782912143242
Category : Safety factor in engineering
Languages : en
Pages : 186

Get Book

Book Description


Structural Reliability Analysis and Prediction

Structural Reliability Analysis and Prediction PDF Author: Robert E. Melchers
Publisher: John Wiley & Sons
ISBN: 1119265991
Category : Technology & Engineering
Languages : en
Pages : 530

Get Book

Book Description
Structural Reliability Analysis and Prediction, Third Edition is a textbook which addresses the important issue of predicting the safety of structures at the design stage and also the safety of existing, perhaps deteriorating structures. Attention is focused on the development and definition of limit states such as serviceability and ultimate strength, the definition of failure and the various models which might be used to describe strength and loading. This book emphasises concepts and applications, built up from basic principles and avoids undue mathematical rigour. It presents an accessible and unified account of the theory and techniques for the analysis of the reliability of engineering structures using probability theory. This new edition has been updated to cover new developments and applications and a new chapter is included which covers structural optimization in the context of reliability analysis. New examples and end of chapter problems are also now included.

Reinforced Concrete Structural Reliability

Reinforced Concrete Structural Reliability PDF Author: Ph.D, Mohamed Abdallah El-Reedy
Publisher: CRC Press
ISBN: 1439874174
Category : Technology & Engineering
Languages : en
Pages : 376

Get Book

Book Description
Structural engineers must focus on a structure's continued safety throughout its service life. Reinforced Concrete Structural Reliability covers the methods that enable engineers to keep structures reliable during all project phases, and presents a practical exploration of up-to-date techniques for predicting the lifetime of a structure. The book a

Methods of Structural Safety

Methods of Structural Safety PDF Author: H. O. Madsen
Publisher: Courier Corporation
ISBN: 0486445976
Category : Science
Languages : en
Pages : 418

Get Book

Book Description
Uncertainties about analytical models, fluctuations in loads, and variability of material properties contribute to the small but real probability of structure failures. This advanced engineering text describes methods developed to deal with stochastic aspects of structural behavior, providing a framework for evaluating, comparing, and combining stochastic effects. Starting with the general problem of consistent evaluation of the reliability of structures, the text proceeds to examination of the second-moment reliability index methods that describe failure in terms of one or more limit states. It presents first-order reliability methods for computation of failure probabilities for individual limit states and for systems; and it illustrates identification of the design parameters most affecting reliability. Additional subjects include a self-contained presentation of extreme-value theory and stochastic processes; stationary, evolutionary, and nonlinear aspects of stochastic response of structures; a stochastic approach to material fatigue damage and crack propagation; and stochastic models for several natural and manufactured loads.