Rotation Generation and Transport in Tokamak Plasmas

Rotation Generation and Transport in Tokamak Plasmas PDF Author: Yuri Anatoly Podpaly
Publisher:
ISBN:
Category :
Languages : en
Pages : 201

Get Book Here

Book Description
Plasma toroidal rotation is a factor important for plasma stability and transport, but it is still a fairly poorly understood area of physics. This thesis focuses on three aspects of rotation: momentum transport, Ohmic rotation reversals, and LHCD induced rotation. Momentum transport is approached in a semi-empirical method through the development of the "Toy Model." The "Toy Model" assumes that the toroidal momentum is transported via diffusive and convective profiles, and, using assumptions about the diffusive and convective terms, it can generate the profiles of the residual stress or source as a function of space and time. Several resultant source profile calculations are shown for SSEP sweeps, rotation reversals, H-modes, and I-modes. Generally, it is observed that the convective profiles do not greatly improve the fits to the data, and that source profiles have peaks around the steep core rotation gradient region of the plasma. Rotation reversals, spontaneous reversals of the rotation direction during the Ohmic phase, are also described in this work. It is seen that they are related to the Linear Ohmic Confinement (LOC) to Saturated Ohmic Confinement (SOC) regime changeover. This relation is supported through linear gyrokinetic simulations that show that the co- to counter- reversal coincides with a change from marginally electron to ion diamagnetic direction most unstable modes which is believed to play a role in the LOC to SOC explanation as well. Lower Hybrid Current Drive (LHCD) induced rotation is also described, including the first experimental observations of bi-directional rotation on a single tokamak. These observations help to explain differences in rotation seen among the various devices running lower hybrid. The LHCD rotation reverses direction as a function of plasma current, and this occurs in a similar parameter space as the Ohmic rotation reversal; it also has turbulence changes that are reminiscent of the Ohmic reversal as well. This suggests that LHCD is, in fact, causing the plasma to transition from the ITG dominated regime to the TEM dominated regime, which explains the rotation differences. These experiments and models provide new tools to understand rotation transport and generation in tokamaks.

Rotation Generation and Transport in Tokamak Plasmas

Rotation Generation and Transport in Tokamak Plasmas PDF Author: Yuri Anatoly Podpaly
Publisher:
ISBN:
Category :
Languages : en
Pages : 201

Get Book Here

Book Description
Plasma toroidal rotation is a factor important for plasma stability and transport, but it is still a fairly poorly understood area of physics. This thesis focuses on three aspects of rotation: momentum transport, Ohmic rotation reversals, and LHCD induced rotation. Momentum transport is approached in a semi-empirical method through the development of the "Toy Model." The "Toy Model" assumes that the toroidal momentum is transported via diffusive and convective profiles, and, using assumptions about the diffusive and convective terms, it can generate the profiles of the residual stress or source as a function of space and time. Several resultant source profile calculations are shown for SSEP sweeps, rotation reversals, H-modes, and I-modes. Generally, it is observed that the convective profiles do not greatly improve the fits to the data, and that source profiles have peaks around the steep core rotation gradient region of the plasma. Rotation reversals, spontaneous reversals of the rotation direction during the Ohmic phase, are also described in this work. It is seen that they are related to the Linear Ohmic Confinement (LOC) to Saturated Ohmic Confinement (SOC) regime changeover. This relation is supported through linear gyrokinetic simulations that show that the co- to counter- reversal coincides with a change from marginally electron to ion diamagnetic direction most unstable modes which is believed to play a role in the LOC to SOC explanation as well. Lower Hybrid Current Drive (LHCD) induced rotation is also described, including the first experimental observations of bi-directional rotation on a single tokamak. These observations help to explain differences in rotation seen among the various devices running lower hybrid. The LHCD rotation reverses direction as a function of plasma current, and this occurs in a similar parameter space as the Ohmic rotation reversal; it also has turbulence changes that are reminiscent of the Ohmic reversal as well. This suggests that LHCD is, in fact, causing the plasma to transition from the ITG dominated regime to the TEM dominated regime, which explains the rotation differences. These experiments and models provide new tools to understand rotation transport and generation in tokamaks.

Driven Rotation, Self-Generated Flow, and Momentum Transport in Tokamak Plasmas

Driven Rotation, Self-Generated Flow, and Momentum Transport in Tokamak Plasmas PDF Author: John Rice
Publisher: Springer Nature
ISBN: 3030922669
Category : Science
Languages : en
Pages : 158

Get Book Here

Book Description
This book provides a comprehensive look at the state of the art of externally driven and self-generated rotation as well as momentum transport in tokamak plasmas. In addition to recent developments, the book includes a review of rotation measurement techniques, measurements of directly and indirectly driven rotation, momentum sinks, self-generated flow, and momentum transport. These results are presented alongside summaries of prevailing theory and are compared to predictions, bringing together both experimental and theoretical perspectives for a broad look at the field. Both researchers and graduate students in the field of plasma physics will find this book to be a useful reference. Although there is an emphasis on tokamaks, a number of the concepts are also relevant to other configurations.

Modeling the Turbulent Momentum Transport in Tokamak Plasmas

Modeling the Turbulent Momentum Transport in Tokamak Plasmas PDF Author: Pierre Cottier
Publisher: LAP Lambert Academic Publishing
ISBN: 9783659411038
Category :
Languages : en
Pages : 128

Get Book Here

Book Description
The magnetic confinement in tokamaks is for now the most advanced way towards energy production by nuclear fusion. Both theoretical and experimental studies showed that rotation generation can increase its performance by reducing the turbulent transport in tokamak plasmas. The rotation influence on the heat and particle fluxes is studied along with the angular momentum transport with the quasi-linear gyro-kinetic eigenvalue code QuaLiKiz. For this purpose, the QuaLiKiz code is modified in order to take the plasma rotation into account and compute the angular momentum flux. It is shown that QuaLiKiz framework is able to correctly predict the angular momentum flux including the ExB shear induced residual stress as well as the influence of rotation on the heat and particle fluxes. The different contributions to the turbulent momentum flux are studied and successfully compared against both non-linear gyro-kinetic simulations and experimental data.

Generation of Plasma Rotation in a Tokamak by Ion-Cyclotron Absorption of Fast Alfven Waves

Generation of Plasma Rotation in a Tokamak by Ion-Cyclotron Absorption of Fast Alfven Waves PDF Author: F. W. Perkins
Publisher:
ISBN:
Category : Magnetohydrodynamic waves
Languages : en
Pages : 8

Get Book Here

Book Description


Turbulent Transport in Rotating Tokamak Plasmas

Turbulent Transport in Rotating Tokamak Plasmas PDF Author: Francis James Casson
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Rotation and Impurity Transport in a Tokamak Plasma with Directed Neutral Beam Injection

Rotation and Impurity Transport in a Tokamak Plasma with Directed Neutral Beam Injection PDF Author: W. M. Stacey (Jr)
Publisher:
ISBN:
Category :
Languages : en
Pages : 31

Get Book Here

Book Description


Rotation and Impurity Transport in a Tokamak Plasma with Directed Neutral Beam Injection

Rotation and Impurity Transport in a Tokamak Plasma with Directed Neutral Beam Injection PDF Author: Weston M. Stacey
Publisher:
ISBN:
Category : Fusion reactors
Languages : en
Pages : 25

Get Book Here

Book Description


Spontaneous Generation of Rotation in Tokamak Plasmas

Spontaneous Generation of Rotation in Tokamak Plasmas PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Get Book Here

Book Description
Three different aspects of intrinsic rotation have been treated. i) A new, first principles model for intrinsic rotation [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has been implemented in the gyrokinetic code GS2. The results obtained with the code are consistent with several experimental observations, namely the rotation peaking observed after an L-H transition, the rotation reversal observed in Ohmic plasmas, and the change in rotation that follows Lower Hybrid wave injection. ii) The model in [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has several simplifying assumptions that seem to be satisfied in most tokamaks. To check the importance of these hypotheses, first principles equations that do not rely on these simplifying assumptions have been derived, and a version of these new equations has been implemented in GS2 as well. iii) A tokamak cross-section that drives large intrinsic rotation has been proposed for future large tokamaks. In large tokamaks, intrinsic rotation is expected to be very small unless some up-down asymmetry is introduced. The research conducted under this contract indicates that tilted ellipticity is the most efficient way to drive intrinsic rotation.

Review of Effects of NBI and Rotation on Plasma Transport in Tokamaks

Review of Effects of NBI and Rotation on Plasma Transport in Tokamaks PDF Author: Weston M. Stacey
Publisher:
ISBN:
Category : Plasma injection
Languages : en
Pages : 18

Get Book Here

Book Description


Orbit Effects on Impurity Transport in a Rotating Tokamak Plasma

Orbit Effects on Impurity Transport in a Rotating Tokamak Plasma PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Particle orbits in a rotating tokamak plasma are calculated from the equation of motion in the frame that rotates with the plasma. It is found that heavy particles in a rotating plasma can drift away from magnetic surfaces significantly faster with a higher bounce frequency, resulting in a diffusion coefficient much larger than that for a stationary plasma. Particle orbits near the surface of a rotating tokamak are also analyzed. Orbit effects indicate that more impurities can penetrate into a plasma rotating with counter-beam injection. Particle simulation is carried out with realistic experimental parameters and the results are in qualitative agreement with some experimental observations in the Tokamak Fusion Test Reactor (TFTR). 19 refs., 15 figs.