Author: Petar Kokotovic
Publisher: SIAM
ISBN: 9781611971118
Category : Mathematics
Languages : en
Pages : 386
Book Description
Singular perturbations and time-scale techniques were introduced to control engineering in the late 1960s and have since become common tools for the modeling, analysis, and design of control systems. In this SIAM Classics edition of the 1986 book, the original text is reprinted in its entirety (along with a new preface), providing once again the theoretical foundation for representative control applications. This book continues to be essential in many ways. It lays down the foundation of singular perturbation theory for linear and nonlinear systems, it presents the methodology in a pedagogical way that is not available anywhere else, and it illustrates the theory with many solved examples, including various physical examples and applications. So while new developments may go beyond the topics covered in this book, they are still based on the methodology described here, which continues to be their common starting point.
Singular Perturbation Methods in Control
Disturbance Observer-Based Control
Author: Shihua Li
Publisher: CRC Press
ISBN: 1466515805
Category : Computers
Languages : en
Pages : 342
Book Description
Due to its abilities to compensate disturbances and uncertainties, disturbance observer based control (DOBC) is regarded as one of the most promising approaches for disturbance-attenuation. One of the first books on DOBC, Disturbance Observer Based Control: Methods and Applications presents novel theory results as well as best practices for applica
Publisher: CRC Press
ISBN: 1466515805
Category : Computers
Languages : en
Pages : 342
Book Description
Due to its abilities to compensate disturbances and uncertainties, disturbance observer based control (DOBC) is regarded as one of the most promising approaches for disturbance-attenuation. One of the first books on DOBC, Disturbance Observer Based Control: Methods and Applications presents novel theory results as well as best practices for applica
Robust Adaptive Dynamic Programming
Author: Yu Jiang
Publisher: John Wiley & Sons
ISBN: 1119132657
Category : Science
Languages : en
Pages : 220
Book Description
A comprehensive look at state-of-the-art ADP theory and real-world applications This book fills a gap in the literature by providing a theoretical framework for integrating techniques from adaptive dynamic programming (ADP) and modern nonlinear control to address data-driven optimal control design challenges arising from both parametric and dynamic uncertainties. Traditional model-based approaches leave much to be desired when addressing the challenges posed by the ever-increasing complexity of real-world engineering systems. An alternative which has received much interest in recent years are biologically-inspired approaches, primarily RADP. Despite their growing popularity worldwide, until now books on ADP have focused nearly exclusively on analysis and design, with scant consideration given to how it can be applied to address robustness issues, a new challenge arising from dynamic uncertainties encountered in common engineering problems. Robust Adaptive Dynamic Programming zeros in on the practical concerns of engineers. The authors develop RADP theory from linear systems to partially-linear, large-scale, and completely nonlinear systems. They provide in-depth coverage of state-of-the-art applications in power systems, supplemented with numerous real-world examples implemented in MATLAB. They also explore fascinating reverse engineering topics, such how ADP theory can be applied to the study of the human brain and cognition. In addition, the book: Covers the latest developments in RADP theory and applications for solving a range of systems’ complexity problems Explores multiple real-world implementations in power systems with illustrative examples backed up by reusable MATLAB code and Simulink block sets Provides an overview of nonlinear control, machine learning, and dynamic control Features discussions of novel applications for RADP theory, including an entire chapter on how it can be used as a computational mechanism of human movement control Robust Adaptive Dynamic Programming is both a valuable working resource and an intriguing exploration of contemporary ADP theory and applications for practicing engineers and advanced students in systems theory, control engineering, computer science, and applied mathematics.
Publisher: John Wiley & Sons
ISBN: 1119132657
Category : Science
Languages : en
Pages : 220
Book Description
A comprehensive look at state-of-the-art ADP theory and real-world applications This book fills a gap in the literature by providing a theoretical framework for integrating techniques from adaptive dynamic programming (ADP) and modern nonlinear control to address data-driven optimal control design challenges arising from both parametric and dynamic uncertainties. Traditional model-based approaches leave much to be desired when addressing the challenges posed by the ever-increasing complexity of real-world engineering systems. An alternative which has received much interest in recent years are biologically-inspired approaches, primarily RADP. Despite their growing popularity worldwide, until now books on ADP have focused nearly exclusively on analysis and design, with scant consideration given to how it can be applied to address robustness issues, a new challenge arising from dynamic uncertainties encountered in common engineering problems. Robust Adaptive Dynamic Programming zeros in on the practical concerns of engineers. The authors develop RADP theory from linear systems to partially-linear, large-scale, and completely nonlinear systems. They provide in-depth coverage of state-of-the-art applications in power systems, supplemented with numerous real-world examples implemented in MATLAB. They also explore fascinating reverse engineering topics, such how ADP theory can be applied to the study of the human brain and cognition. In addition, the book: Covers the latest developments in RADP theory and applications for solving a range of systems’ complexity problems Explores multiple real-world implementations in power systems with illustrative examples backed up by reusable MATLAB code and Simulink block sets Provides an overview of nonlinear control, machine learning, and dynamic control Features discussions of novel applications for RADP theory, including an entire chapter on how it can be used as a computational mechanism of human movement control Robust Adaptive Dynamic Programming is both a valuable working resource and an intriguing exploration of contemporary ADP theory and applications for practicing engineers and advanced students in systems theory, control engineering, computer science, and applied mathematics.
Nonlinear and Adaptive Control with Applications
Author: Alessandro Astolfi
Publisher: Springer Science & Business Media
ISBN: 1848000669
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
The authors here provide a detailed treatment of the design of robust adaptive controllers for nonlinear systems with uncertainties. They employ a new tool based on the ideas of system immersion and manifold invariance. New algorithms are delivered for the construction of robust asymptotically-stabilizing and adaptive control laws for nonlinear systems. The methods proposed lead to modular schemes that are easier to tune than their counterparts obtained from Lyapunov redesign.
Publisher: Springer Science & Business Media
ISBN: 1848000669
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
The authors here provide a detailed treatment of the design of robust adaptive controllers for nonlinear systems with uncertainties. They employ a new tool based on the ideas of system immersion and manifold invariance. New algorithms are delivered for the construction of robust asymptotically-stabilizing and adaptive control laws for nonlinear systems. The methods proposed lead to modular schemes that are easier to tune than their counterparts obtained from Lyapunov redesign.
High-Gain Observers in Nonlinear Feedback Control
Author: Hassan H. Khalil
Publisher: SIAM
ISBN: 1611974852
Category : Mathematics
Languages : en
Pages : 330
Book Description
For over a quarter of a century, high-gain observers have been used extensively in the design of output feedback control of nonlinear systems. This book presents a clear, unified treatment of the theory of high-gain observers and their use in feedback control. Also provided is a discussion of the separation principle for nonlinear systems; this differs from other separation results in the literature in that recovery of stability as well as performance of state feedback controllers is given. The author provides a detailed discussion of applications of high-gain observers to adaptive control and regulation problems and recent results on the extended high-gain observers. In addition, the author addresses two challenges that face the implementation of high-gain observers: high dimension and measurement noise. Low-power observers are presented for high-dimensional systems. The effect of measurement noise is characterized and techniques to reduce that effect are presented. The book ends with discussion of digital implementation of the observers. Readers will find comprehensive coverage of the main results on high-gain observers; rigorous, self-contained proofs of all results; and numerous examples that illustrate and provide motivation for the results. The book is intended for engineers and applied mathematicians who design or research feedback control systems.
Publisher: SIAM
ISBN: 1611974852
Category : Mathematics
Languages : en
Pages : 330
Book Description
For over a quarter of a century, high-gain observers have been used extensively in the design of output feedback control of nonlinear systems. This book presents a clear, unified treatment of the theory of high-gain observers and their use in feedback control. Also provided is a discussion of the separation principle for nonlinear systems; this differs from other separation results in the literature in that recovery of stability as well as performance of state feedback controllers is given. The author provides a detailed discussion of applications of high-gain observers to adaptive control and regulation problems and recent results on the extended high-gain observers. In addition, the author addresses two challenges that face the implementation of high-gain observers: high dimension and measurement noise. Low-power observers are presented for high-dimensional systems. The effect of measurement noise is characterized and techniques to reduce that effect are presented. The book ends with discussion of digital implementation of the observers. Readers will find comprehensive coverage of the main results on high-gain observers; rigorous, self-contained proofs of all results; and numerous examples that illustrate and provide motivation for the results. The book is intended for engineers and applied mathematicians who design or research feedback control systems.
Nonlinear Output Regulation
Author: Jie Huang
Publisher: SIAM
ISBN: 9780898718683
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
Nonlinear Output Regulation: Theory and Applications provides a comprehensive and in-depth treatment of the nonlinear output regulation problem. It contains up-to-date research results and algorithms and tools for approaching and solving the output regulation problem and related problems, such as robust stabilization of nonlinear systems. Output regulation is a general mathematical formulation of many control problems encountered in daily life including cruise control of automobiles, landing and takeoff of aircraft, manipulation of robot arms, orbiting of satellites, and speed regulation of motors. The book provides a self-contained treatment starting with an introduction to the linear output regulation problem and a review of the fundamental nonlinear control theory. The author's presentation strikes a balance between the theoretical foundation of the problem and the practical applications of the theory. The book is accompanied by many examples, including practical case studies with numerical simulations based on MATLAB/SIMULINK. Audience: graduate students, professors, and researchers in applied mathematics, electrical engineering, mechanical engineering, and aerospace engineering. The book can be used in a graduate-level control systems course as well as by control design engineers in industry.
Publisher: SIAM
ISBN: 9780898718683
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
Nonlinear Output Regulation: Theory and Applications provides a comprehensive and in-depth treatment of the nonlinear output regulation problem. It contains up-to-date research results and algorithms and tools for approaching and solving the output regulation problem and related problems, such as robust stabilization of nonlinear systems. Output regulation is a general mathematical formulation of many control problems encountered in daily life including cruise control of automobiles, landing and takeoff of aircraft, manipulation of robot arms, orbiting of satellites, and speed regulation of motors. The book provides a self-contained treatment starting with an introduction to the linear output regulation problem and a review of the fundamental nonlinear control theory. The author's presentation strikes a balance between the theoretical foundation of the problem and the practical applications of the theory. The book is accompanied by many examples, including practical case studies with numerical simulations based on MATLAB/SIMULINK. Audience: graduate students, professors, and researchers in applied mathematics, electrical engineering, mechanical engineering, and aerospace engineering. The book can be used in a graduate-level control systems course as well as by control design engineers in industry.
Nonlinear Feedback Control Systems
Author: Rui J. P. DeFigueiredo
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 240
Book Description
Nonlinear analytic mappings. Nonlinear Lipschitz operators. Nonlinear feedback systems. Optimal design of nonlinear feedback control systems. Coprime factorizations of nonlinear mappings for control systems. Nonlinear system identification.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 240
Book Description
Nonlinear analytic mappings. Nonlinear Lipschitz operators. Nonlinear feedback systems. Optimal design of nonlinear feedback control systems. Coprime factorizations of nonlinear mappings for control systems. Nonlinear system identification.
Feedback Control Theory
Author: John C. Doyle
Publisher: Courier Corporation
ISBN: 0486318338
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.
Publisher: Courier Corporation
ISBN: 0486318338
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.
Control of Nonlinear and Hybrid Process Systems
Author: Panagiotis D. Christofides
Publisher: Springer Science & Business Media
ISBN: 9783540284567
Category : Technology & Engineering
Languages : en
Pages : 736
Book Description
This monograph provides insight and fundamental understanding into the feedback control of nonlinear and hybrid process systems. It presents state-of-the-art methods for the synthesis of nonlinear feedback controllers for nonlinear and hybrid systems with uncertainty, constraints and time-delays with numerous applications, especially to chemical processes. It covers both state feedback and output feedback (including state estimator design) controller designs. Control of Nonlinear and Hybrid Process Systems includes numerous comments and remarks providing insight and fundamental understanding into the feedback control of nonlinear and hybrid systems, as well as applications that demonstrate the implementation and effectiveness of the presented control methods. The book includes many detailed examples which can be easily modified by a control engineer to be tailored to a specific application. This book is useful for researchers in control systems theory, graduate students pursuing their degree in control systems and control engineers.
Publisher: Springer Science & Business Media
ISBN: 9783540284567
Category : Technology & Engineering
Languages : en
Pages : 736
Book Description
This monograph provides insight and fundamental understanding into the feedback control of nonlinear and hybrid process systems. It presents state-of-the-art methods for the synthesis of nonlinear feedback controllers for nonlinear and hybrid systems with uncertainty, constraints and time-delays with numerous applications, especially to chemical processes. It covers both state feedback and output feedback (including state estimator design) controller designs. Control of Nonlinear and Hybrid Process Systems includes numerous comments and remarks providing insight and fundamental understanding into the feedback control of nonlinear and hybrid systems, as well as applications that demonstrate the implementation and effectiveness of the presented control methods. The book includes many detailed examples which can be easily modified by a control engineer to be tailored to a specific application. This book is useful for researchers in control systems theory, graduate students pursuing their degree in control systems and control engineers.
Nonlinear and Robust Control of PDE Systems
Author: Panagiotis D. Christofides
Publisher: Springer Science & Business Media
ISBN: 1461201853
Category : Science
Languages : en
Pages : 262
Book Description
The interest in control of nonlinear partial differential equation (PDE) sys tems has been triggered by the need to achieve tight distributed control of transport-reaction processes that exhibit highly nonlinear behavior and strong spatial variations. Drawing from recent advances in dynamics of PDE systems and nonlinear control theory, control of nonlinear PDEs has evolved into a very active research area of systems and control. This book the first of its kind- presents general methods for the synthesis of nonlinear and robust feedback controllers for broad classes of nonlinear PDE sys tems and illustrates their applications to transport-reaction processes of industrial interest. Specifically, our attention focuses on quasi-linear hyperbolic and parabolic PDE systems for which the manipulated inputs and measured and controlled outputs are distributed in space and bounded. We use geometric and Lyapunov-based control techniques to synthesize nonlinear and robust controllers that use a finite number of measurement sensors and control actuators to achieve stabilization of the closed-loop system, output track ing, and attenuation of the effect of model uncertainty. The controllers are successfully applied to numerous convection-reaction and diffusion-reaction processes, including a rapid thermal chemical vapor deposition reactor and a Czochralski crystal growth process. The book includes comparisons of the proposed nonlinear and robust control methods with other approaches and discussions of practical implementation issues.
Publisher: Springer Science & Business Media
ISBN: 1461201853
Category : Science
Languages : en
Pages : 262
Book Description
The interest in control of nonlinear partial differential equation (PDE) sys tems has been triggered by the need to achieve tight distributed control of transport-reaction processes that exhibit highly nonlinear behavior and strong spatial variations. Drawing from recent advances in dynamics of PDE systems and nonlinear control theory, control of nonlinear PDEs has evolved into a very active research area of systems and control. This book the first of its kind- presents general methods for the synthesis of nonlinear and robust feedback controllers for broad classes of nonlinear PDE sys tems and illustrates their applications to transport-reaction processes of industrial interest. Specifically, our attention focuses on quasi-linear hyperbolic and parabolic PDE systems for which the manipulated inputs and measured and controlled outputs are distributed in space and bounded. We use geometric and Lyapunov-based control techniques to synthesize nonlinear and robust controllers that use a finite number of measurement sensors and control actuators to achieve stabilization of the closed-loop system, output track ing, and attenuation of the effect of model uncertainty. The controllers are successfully applied to numerous convection-reaction and diffusion-reaction processes, including a rapid thermal chemical vapor deposition reactor and a Czochralski crystal growth process. The book includes comparisons of the proposed nonlinear and robust control methods with other approaches and discussions of practical implementation issues.