Review of Diesel Exhaust Aftertreatment Programs

Review of Diesel Exhaust Aftertreatment Programs PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The DOE Office of Heavy Vehicle Technologies (OHVT) and its predecessor organizations have maintained aggressive projects in diesel exhaust aftertreatment since 1993. The Energy Policy Act of 1992, Section 2027, specifically authorized DOE to help accelerate the ability of U.S. diesel engine manufacturers to meet emissions regulations while maintaining the compression ignition engines inherently high efficiency. A variety of concepts and devices have been evaluated for NOx and Particulate matter (PM) control. Additionally, supporting technology in diagnostics for catalysis, PM measurement, and catalyst/reductant systems are being developed. This paper provides a summary of technologies that have been investigated and provides recent results from ongoing DOE-sponsored R and D. NOx control has been explored via active NOx catalysis, several plasma-assisted systems, electrochemical cells, and fuel additives. Both catalytic and non-catalytic filter technologies have been investigated for PM control.

Review of Diesel Exhaust Aftertreatment Programs

Review of Diesel Exhaust Aftertreatment Programs PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The DOE Office of Heavy Vehicle Technologies (OHVT) and its predecessor organizations have maintained aggressive projects in diesel exhaust aftertreatment since 1993. The Energy Policy Act of 1992, Section 2027, specifically authorized DOE to help accelerate the ability of U.S. diesel engine manufacturers to meet emissions regulations while maintaining the compression ignition engines inherently high efficiency. A variety of concepts and devices have been evaluated for NOx and Particulate matter (PM) control. Additionally, supporting technology in diagnostics for catalysis, PM measurement, and catalyst/reductant systems are being developed. This paper provides a summary of technologies that have been investigated and provides recent results from ongoing DOE-sponsored R and D. NOx control has been explored via active NOx catalysis, several plasma-assisted systems, electrochemical cells, and fuel additives. Both catalytic and non-catalytic filter technologies have been investigated for PM control.

Diesel Exhaust Aftertreatment System Study

Diesel Exhaust Aftertreatment System Study PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 62

Get Book Here

Book Description


Critical Topics in Exhaust Gas Aftertreatment

Critical Topics in Exhaust Gas Aftertreatment PDF Author: Peter Eastwood
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 428

Get Book Here

Book Description
The topics most critical to exhaust gas aftertreatment are described in depth: the problems which need to be overcome, and the possible solutions currently under investigation. After treatment is covered as an emissions subject in its own right; and all components of the entire system are included, not just catalysts. Highly technical issues are presented in a way that makes them readily accessible to the non-specialist. It Includes 700 references.

Automotive Emissions Regulations and Exhaust Aftertreatment Systems

Automotive Emissions Regulations and Exhaust Aftertreatment Systems PDF Author: John Kasab
Publisher: SAE International
ISBN: 0768099560
Category : Technology & Engineering
Languages : en
Pages : 464

Get Book Here

Book Description
The objective of this book is to present a fundamental development of the science and engineering underlying the design of exhaust aftertreatment systems for automotive internal combustion engines. No pre-requisite knowledge of the field is required: our objective is to acquaint the reader, whom we expect to be new to the field of emissions control, with the underlying principles, control methods, common problems, and fuel effects on catalytic exhaust aftertreatment devices. We do this in hope that they can better understand the previous and current generations of emissions control, and improve upon them. This book is designed for the engineer, researcher, designer, student, or any combination of those, who is concerned with the control of automotive exhaust emissions. It includes discussion of theory and fundamentals applicable to hardware development.

Health effects of diesel exhaust emissions

Health effects of diesel exhaust emissions PDF Author: David Lee Johnson
Publisher:
ISBN:
Category : Diesel motor exhaust gas
Languages : en
Pages : 140

Get Book Here

Book Description


Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

Development of Diesel Exhaust Aftertreatment System for Tier II Emissions PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (

Low Emissions Aftertreatment and Diesel Emissions Reduction

Low Emissions Aftertreatment and Diesel Emissions Reduction PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable exhaust species and temperature characteristics. These favorable emissions characteristics were obtained while maintaining performance and fuel economy. These aggressive emissions and performance results were achieved by applying a robust systems technology development methodology. This systems approach benefits substantially from an integrated experimental and analytical approach to technology development, which is one of DDCs core competencies Also, DDC is uniquely positioned to undertake such a systems technology development approach, given its vertically integrated commercial structure within the DaimlerChrysler organization. State-of-the-art analytical tools were developed targeting specific LEADER program objectives and were applied to guide system enhancements and to provide testing directions, resulting in a shortened and efficient development cycle. Application examples include ammonia/NO{sub x} distribution improvement and urea injection controls development, and were key contributors to significantly reduce engine out as well as tailpipe out emissions. Successful cooperation between DDC and Engelhard Corporation, the major subcontractor for the LEADER program and provider of state-of-the-art technologies on various catalysts, was another contributing factor to ensure that both passenger car and LD truck applications achieved Tier 2 Bin 3 emissions levels. Significant technical challenges, which highlight barriers of commercialization of diesel technology for passenger cars and LD truck applications, are presented at the end of this report.

Review of Diesel Odor and Toxic Vapor Emissions. Final Report

Review of Diesel Odor and Toxic Vapor Emissions. Final Report PDF Author: Philip L. Levins
Publisher:
ISBN:
Category :
Languages : en
Pages : 54

Get Book Here

Book Description


Diesel Exhaust Aftertreatment

Diesel Exhaust Aftertreatment PDF Author: Society of Automotive Engineers
Publisher:
ISBN: 9781560913283
Category : Technology & Engineering
Languages : en
Pages : 225

Get Book Here

Book Description


Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Get Book Here

Book Description
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.