Resilient Hybrid Electronics for Extreme/Harsh Environments

Resilient Hybrid Electronics for Extreme/Harsh Environments PDF Author: Amanda Schrand
Publisher: CRC Press
ISBN: 1003857183
Category : Technology & Engineering
Languages : en
Pages : 187

Get Book Here

Book Description
The success of future innovative technology relies upon a community with a shared vision. Here, we present an overview of the latest technological progress in the field of printed electronics for use in harsh or extreme environments. Each chapter unlocksscientific and engineering discoveries that will undoubtedly lead to progression from proof of concept to device creation. The main topics covered in this book include some of the most promising materials, methods, and the ability to integrate printed materials with commercial components to provide the basis for the next generation of electronics that are dubbed “survivable” in environments with high g‐orces, corrosion, vibration, and large temperature fluctuations. A wide variety of materials are discussed that contribute to robust hybrid electronics, including printable conductive composite inks, ceramics and ceramic matrix composites, polymer‐erived ceramics, thin metal films, elastomers, solders and epoxies, to name a few. Collectively, these materials and associated components are used to construct conductive traces, interconnects, antennas, pressure sensors, temperature sensors, power inducting devices, strain sensors and gauges, soft actuators, supercapacitors, piezo ionic elements, resistors, waveguides, filters, electrodes, batteries, various detectors, monitoring devices, transducers, and RF systems and graded dielectric, or graded index (GRIN) structures. New designs that incorporate the electronics as embedded materials into channels, slots and other methods to protect the electronics from the extreme elements of the operational environment are also envisioned to increase their survivability while remaining cognizant of the required frequency of replacement, reapplication and integration of power sources. Lastly, the ability of printer manufacturers, software providers and users to work together to build multi‐axis, multi‐material and commercial‐off‐the‐shelf (COTS) integration into user‐friendly systems will be a great advancement for the field of printed electronics. Therefore, the blueprint for manufacturing resilient hybrid electronics consists of novel designs that exploit the benefits of advances in additive manufacturing that are then efficiently paired with commercially available components to produce devices that exceed known constraints. As a primary example, metals can be deposited onto polymers in a variety of ways, including aerosol jetting, microdispensing, electroplating, sintering, vacuum deposition, supersonic beam cluster deposition, and plasma‐based techniques, to name a few. Taking these scientific discoveries and creatively combining them into robotic, multi‐material factories of the future could be one shared aim of the printed electronics community toward survivable device creation.

Resilient Hybrid Electronics for Extreme/Harsh Environments

Resilient Hybrid Electronics for Extreme/Harsh Environments PDF Author: Amanda Schrand
Publisher: CRC Press
ISBN: 1003857183
Category : Technology & Engineering
Languages : en
Pages : 187

Get Book Here

Book Description
The success of future innovative technology relies upon a community with a shared vision. Here, we present an overview of the latest technological progress in the field of printed electronics for use in harsh or extreme environments. Each chapter unlocksscientific and engineering discoveries that will undoubtedly lead to progression from proof of concept to device creation. The main topics covered in this book include some of the most promising materials, methods, and the ability to integrate printed materials with commercial components to provide the basis for the next generation of electronics that are dubbed “survivable” in environments with high g‐orces, corrosion, vibration, and large temperature fluctuations. A wide variety of materials are discussed that contribute to robust hybrid electronics, including printable conductive composite inks, ceramics and ceramic matrix composites, polymer‐erived ceramics, thin metal films, elastomers, solders and epoxies, to name a few. Collectively, these materials and associated components are used to construct conductive traces, interconnects, antennas, pressure sensors, temperature sensors, power inducting devices, strain sensors and gauges, soft actuators, supercapacitors, piezo ionic elements, resistors, waveguides, filters, electrodes, batteries, various detectors, monitoring devices, transducers, and RF systems and graded dielectric, or graded index (GRIN) structures. New designs that incorporate the electronics as embedded materials into channels, slots and other methods to protect the electronics from the extreme elements of the operational environment are also envisioned to increase their survivability while remaining cognizant of the required frequency of replacement, reapplication and integration of power sources. Lastly, the ability of printer manufacturers, software providers and users to work together to build multi‐axis, multi‐material and commercial‐off‐the‐shelf (COTS) integration into user‐friendly systems will be a great advancement for the field of printed electronics. Therefore, the blueprint for manufacturing resilient hybrid electronics consists of novel designs that exploit the benefits of advances in additive manufacturing that are then efficiently paired with commercially available components to produce devices that exceed known constraints. As a primary example, metals can be deposited onto polymers in a variety of ways, including aerosol jetting, microdispensing, electroplating, sintering, vacuum deposition, supersonic beam cluster deposition, and plasma‐based techniques, to name a few. Taking these scientific discoveries and creatively combining them into robotic, multi‐material factories of the future could be one shared aim of the printed electronics community toward survivable device creation.

Resilient Hybrid Electronics for Extreme/Harsh Environments

Resilient Hybrid Electronics for Extreme/Harsh Environments PDF Author: Amanda Schrand
Publisher:
ISBN: 9780367687649
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
Resilient and Survivable Hybrid Electronics

Fast Charging and Resilient Transportation Infrastructures in Smart Cities

Fast Charging and Resilient Transportation Infrastructures in Smart Cities PDF Author: Hossam A. Gabbar
Publisher: Springer Nature
ISBN: 3031095006
Category : Technology & Engineering
Languages : en
Pages : 296

Get Book Here

Book Description
This book provides readers with expert knowledge on the design of fast charging infrastructures and their planning in smart cities and communities to support autonomous transportation. The recent development of fast charging infrastructures using hybrid energy systems is examined, along with aspects of connected and autonomous vehicles (CAV) and their integration within transportation networks and city infrastructures. The book looks at challenges and opportunities for autonomous transportation, including connected and autonomous vehicles, shuttles, and their technology development and deployment within smart communities. Intelligent control strategies, architectures, and systems are also covered, along with intelligent data centers that ensure effective transportation networks during normal and emergency situations. Planning strategies are presented to demonstrate the resilient transportation infrastructures, and optimized performance is discussed in view of performance indicators and requirements specifications, as well as regulations and standards.

CVD Diamond for Electronic Devices and Sensors

CVD Diamond for Electronic Devices and Sensors PDF Author: Ricardo S. Sussmann
Publisher: John Wiley & Sons
ISBN: 9780470740361
Category : Technology & Engineering
Languages : en
Pages : 596

Get Book Here

Book Description
Synthetic diamond is diamond produced by using chemical or physical processes. Like naturally occurring diamond it is composed of a three-dimensional carbon crystal. Due to its extreme physical properties, synthetic diamond is used in many industrial applications, such as drill bits and scratch-proof coatings, and has the potential to be used in many new application areas A brand new title from the respected Wiley Materials for Electronic and Optoelectronic Applications series, this title is the most up-to-date resource for diamond specialists. Beginning with an introduction to the properties of diamond, defects, impurities and the growth of CVD diamond with its imminent commercial impact, the remainder of the book comprises six sections: introduction, radiation sensors, active electronic devices, biosensors, MEMs and electrochemistry. Subsequent chapters cover the diverse areas in which diamond applications are having an impact including electronics, sensors and actuators and medicine.

Silicon Carbide Microsystems for Harsh Environments

Silicon Carbide Microsystems for Harsh Environments PDF Author: Muthu Wijesundara
Publisher: Springer Science & Business Media
ISBN: 1441971211
Category : Technology & Engineering
Languages : en
Pages : 247

Get Book Here

Book Description
Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods towards system level integration of components and key challenges are evaluated and discussed based on the current state of SiC materials processing and device technology. Issues such as temperature mismatch, process compatibility and temperature stability of individual components and how these issues manifest when building the system receive thorough investigation. The material covered not only reviews the state-of-the-art MEMS devices, provides a framework for the joining of electronics and MEMS along with packaging into usable harsh-environment-ready sensor modules.

High Temperature Electronics

High Temperature Electronics PDF Author: F. Patrick McCluskey
Publisher: CRC Press
ISBN: 1351440810
Category : Technology & Engineering
Languages : en
Pages : 341

Get Book Here

Book Description
The development of electronics that can operate at high temperatures has been identified as a critical technology for the next century. Increasingly, engineers will be called upon to design avionics, automotive, and geophysical electronic systems requiring components and packaging reliable to 200 °C and beyond. Until now, however, they have had no single resource on high temperature electronics to assist them. Such a resource is critically needed, since the design and manufacture of electronic components have now made it possible to design electronic systems that will operate reliably above the traditional temperature limit of 125 °C. However, successful system development efforts hinge on a firm understanding of the fundamentals of semiconductor physics and device processing, materials selection, package design, and thermal management, together with a knowledge of the intended application environments. High Temperature Electronics brings together this essential information and presents it for the first time in a unified way. Packaging and device engineers and technologists will find this book required reading for its coverage of the techniques and tradeoffs involved in materials selection, design, and thermal management and for its presentation of best design practices using actual fielded systems as examples. In addition, professors and students will find this book suitable for graduate-level courses because of its detailed level of explanation and its coverage of fundamental scientific concepts. Experts from the field of high temperature electronics have contributed to nine chapters covering topics ranging from semiconductor device selection to testing and final assembly.

Spinoff 2012

Spinoff 2012 PDF Author: Daniel Coleman
Publisher: Government Printing Office
ISBN: 9780160916960
Category : Technology & Engineering
Languages : en
Pages : 204

Get Book Here

Book Description
NP 2012-11-912-HQ. Provides an in-depth look at how NASA's initiatives in aeronautics and space exploration have resulted in beneficial commercial technologies in the fields of health and medicine, transportation, public safety, consumer goods, environmental protection, computer technology and industrial productivity

Advanced Soft Electronics in Biomedical Engineering

Advanced Soft Electronics in Biomedical Engineering PDF Author: Mengxiao Chen
Publisher: CRC Press
ISBN: 1040087345
Category : Technology & Engineering
Languages : en
Pages : 272

Get Book Here

Book Description
The book presents the latest advances in soft electronics in biomedical engineering and its potential applications in various biomedical fields. The contributors provide comprehensive coverage of how soft electronics are used in diagnostics and monitoring, medical therapy, neural engineering, and wearable and implantable systems. In particular, some emerging research areas such as advanced soft robotics, fiber sensing technologies, and power optimization strategies are explored. In addition, the book highlights international standardization activities in wearable technologies and implantable bioelectronics. The book will benefit researchers, engineers, and advanced students in biomedical engineering, electrical and computer engineering, and materials science.

Boron

Boron PDF Author: Ron Legarski
Publisher: SolveForce
ISBN:
Category : Science
Languages : en
Pages : 585

Get Book Here

Book Description
Explore the fascinating world of boron, one of the most versatile and impactful elements shaping modern technology and industry. "Boron: From Discovery to Modern Energy Applications" is a comprehensive guide to understanding boron’s journey from its discovery to its wide-ranging applications in fields such as energy storage, medicine, aerospace, agriculture, and materials science. This book dives deep into the chemical properties of boron, its extraction processes, and its industrial significance, while providing a forward-looking exploration of its potential to revolutionize key industries. Each chapter offers detailed insights into how boron is being used to address some of the world’s most pressing challenges. From boron-doped materials that enhance the performance of electric vehicles and renewable energy systems, to boron-based cancer treatments that are saving lives, this book uncovers the profound ways in which boron is influencing the future of science and technology. In addition to detailed case studies, this book features contributions from leading researchers and innovators, profiles of key figures in boron technology, and in-depth analysis of boron’s role in global trade and sustainable development. Whether you're a scientist, engineer, industry professional, or simply curious about the hidden power of boron, this book serves as an essential resource for understanding the critical role this element plays in the technological advancements of today and tomorrow. With comprehensive appendices, including data tables, conferences, and further reading resources, "Boron: From Discovery to Modern Energy Applications" is a must-read for anyone interested in how this often-overlooked element is driving innovation across industries.

Hybrid Nanofillers for Polymer Reinforcement

Hybrid Nanofillers for Polymer Reinforcement PDF Author: Sabu Thomas
Publisher: Elsevier
ISBN: 0323991408
Category : Science
Languages : en
Pages : 609

Get Book Here

Book Description
Hybrid Nanofillers for Polymer Reinforcement: Synthesis, Assembly, Characterization, and Applications provides a targeted approach to hybrid nanostructures, enabling the development of these advanced nanomaterials for specific applications. The book begins by reviewing the status of hybrid nanostructures, their current applications, and future opportunities. This is followed by chapters examining synthesis and characterization techniques, as well as interactions within nanohybrid systems. The second part of the book provides detailed chapters each highlighting a particular application area and discussing the preparation of various hybrid nano systems that can potentially be utilized in that area. The last chapters turn towards notable state-of-the-art hybrid nanomaterials and their properties and applications. This book is a valuable resource for researchers and advanced students across polymer science, nanotechnology, rubber technology, chemistry, sustainable materials, and materials engineering, as well as scientists, engineers, and R&D professionals with an interest in hybrid nanostructures or advanced nanomaterials for a industrial application. - Provides synthesis methods, characterization techniques, and structure-property analysis for hybrid nanostructures - Offers in-depth coverage that focuses on specific applications across energy storage, environment, automotive, aerospace, construction and biomedicine - Includes the latest novel areas, such as elastomeric hybrid nano systems, hybrid ceramic polymer nanocomposites, and self-assembled structures