Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads

Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads

Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

Whole Building Heat and Moisture Analysis

Whole Building Heat and Moisture Analysis PDF Author: Fitsum Tariku
Publisher:
ISBN:
Category : Buildings
Languages : en
Pages : 374

Get Book Here

Book Description


Moisture and Buildings

Moisture and Buildings PDF Author: Arianna Brambilla
Publisher: Woodhead Publishing
ISBN: 0128210982
Category : Technology & Engineering
Languages : en
Pages : 201

Get Book Here

Book Description
One in three homes, on average, suffer from excessive dampness and mould proliferation, with significant health and economic impacts. The combination of new construction methodologies, stricter airtightness requirements and the changing social and cultural context that influences the way we live inside buildings has created unprecedented challenges for the built environment. In modifying indoor and outdoor environments and the building envelopes that serve as a filter between the two, we are changing the physical parameters of the ways in which buildings behave and respond to climatic stimuli. Understanding and predicting the way in which buildings and moisture may interact should be an important step in the design process, aiming to minimise possible negative long-term consequences. Understanding and predicting the way in which buildings and moisture may interact is, today more than ever, essential yet difficult, as the experience of the past has lost its applicability. Moisture-related issues never have a simple solution, since they involve multiple factors, including design, construction, maintenance, materials, climate and occupation pattern. Thus, while the topic is attracting growing attention among researchers, designers and practitioners, the pace with which actual change is occurring is still too slow. Moisture and Buildings provides a critical overview of current research, knowledge and policy frameworks, and presents a comprehensive analysis of the implications of moisture and the importance of accounting for it during the design process. It responds to the urgent need for a systematic organization of the existing knowledge to identify research gaps and provide directions for future developments. The ultimate goal is to increase awareness of the multifaceted implications of hygrothermal phenomena and promote integrated design processes that lead to healthier and more durable constructions. Presents advanced knowledge on hygrothermal processes and their interaction with buildings Integrates the three key areas of moisture transport and its impact on buildings, including durability, human health and comfort Considers the most useful computational tools for assessing moisture and building interactions Includes a section on the main European, American and Australian building codes Explains the risks of mold growth to human health, including growth models to assessment methods

Whole Building Heat, Air and Moisture Transfer

Whole Building Heat, Air and Moisture Transfer PDF Author: Menghao Qin
Publisher: LAP Lambert Academic Publishing
ISBN: 9783843372220
Category :
Languages : en
Pages : 248

Get Book Here

Book Description
Buildings account for 35 percent of the world s energy use and a similar percentage of CO2 emissions. In order to ensure adequate energy supplies and to curtail the growth of CO2 emissions, it is essential that building energy consumption is significantly reduced. One way this can be achieved is through the introduction of sustainable building design enabled by innovative building simulation tools, for example the whole building heat, air and moisture (HAM) transfer model. The hygrothermal transfer between building envelopes and indoor air has a significant influence on the indoor environment and energy performance of buildings. However in most applications, building envelope designers attempt to predict the hygrothermal performance of an individual building element by uncoupling the system from interactions of the other envelope components to both indoor/outdoor environments. A more advanced building performance evaluation approach requires the direct coupling of all building envelope systems with HVAC systems and indoor/outdoor environments. The book will focus on the development of a coupled HAM model for whole building simulation.

Green Schools

Green Schools PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309180317
Category : Science
Languages : en
Pages : 192

Get Book Here

Book Description
Evidence has accumulated that shows that the quality of indoor environments can affect the health and productivity of adults and children. One consequence is that a movement has emerged to promote the design of schools that have fewer adverse environmental effects. To examine the potential of such design for improving education, several private organizations asked the NRC to review and assess the health and productivity benefits of green schools. This report provides an analysis of the complexity of making such a determination; and an assessment of the potential human health and performance benefits of improvements in the building envelope, indoor air quality, lighting, and acoustical quality. The report also presents an assessment of the overall building condition and student achievement, and offers an analysis of and recommendations for planning and maintaining green schools including research considerations.

Damp Indoor Spaces and Health

Damp Indoor Spaces and Health PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309091934
Category : Science
Languages : en
Pages : 369

Get Book Here

Book Description
Almost all homes, apartments, and commercial buildings will experience leaks, flooding, or other forms of excessive indoor dampness at some point. Not only is excessive dampness a health problem by itself, it also contributes to several other potentially problematic types of situations. Molds and other microbial agents favor damp indoor environments, and excess moisture may initiate the release of chemical emissions from damaged building materials and furnishings. This new book from the Institute of Medicine examines the health impact of exposures resulting from damp indoor environments and offers recommendations for public health interventions. Damp Indoor Spaces and Health covers a broad range of topics. The book not only examines the relationship between damp or moldy indoor environments and adverse health outcomes but also discusses how and where buildings get wet, how dampness influences microbial growth and chemical emissions, ways to prevent and remediate dampness, and elements of a public health response to the issues. A comprehensive literature review finds sufficient evidence of an association between damp indoor environments and some upper respiratory tract symptoms, coughing, wheezing, and asthma symptoms in sensitized persons. This important book will be of interest to a wide-ranging audience of science, health, engineering, and building professionals, government officials, and members of the public.

Journal of Research of the National Bureau of Standards

Journal of Research of the National Bureau of Standards PDF Author: United States. National Bureau of Standards
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 474

Get Book Here

Book Description


Heat-air-moisture Transport

Heat-air-moisture Transport PDF Author: Phalguni Mukhopadhyaya
Publisher: ASTM International
ISBN: 0803134223
Category : Building materials
Languages : en
Pages : 122

Get Book Here

Book Description


Moisture control in buildings

Moisture control in buildings PDF Author: Heinz R. Trechsel
Publisher: ASTM International
ISBN:
Category :
Languages : en
Pages : 494

Get Book Here

Book Description


Applied Building Physics

Applied Building Physics PDF Author: Hugo S. L. Hens
Publisher: John Wiley & Sons
ISBN: 3433031479
Category : Technology & Engineering
Languages : en
Pages : 358

Get Book Here

Book Description
Bad experiences with construction quality, the energy crises of 1973 and 1979,complaints about `sick buildings?, thermal, acoustical, visual and olfactory discomfort, the need for good air quality, the move towards more sustainability ? all these have accelerated the development of a field that, for a long time, was hardly more than an academic exercise: building physics. The discipline embraces domains such as heat and mass transfer, building acoustics, lighting, indoor environmental quality and energy efficiency. In some countries, fire safety is also included. Through the application of physical knowledge and its combination with information coming from other disciplines, the field helps to understand the physical phenomena governing building parts, building envelope, whole building and built environment performance, although for the last the wording `urban physics? is used. Building physics has a real impact on performance-based building design. This volume on `Applied Building Physics? discusses the heat, air and moisture performance metrics that affect building design, construction and retrofitting.