Author: Clive D. Rodgers
Publisher: World Scientific
ISBN: 981022740X
Category : Science
Languages : en
Pages : 256
Book Description
Annotation Rodgers (U. of Oxford) provides graduate students and other researchers a background to the inverse problem and its solution, with applications relating to atmospheric measurements. He introduces the stages in the reverse order than the usual approach in order to develop the learner's intuition about the nature of the inverse problem. Annotation copyrighted by Book News, Inc., Portland, OR.
Inverse Methods for Atmospheric Sounding
Author: Clive D. Rodgers
Publisher: World Scientific
ISBN: 981022740X
Category : Science
Languages : en
Pages : 256
Book Description
Annotation Rodgers (U. of Oxford) provides graduate students and other researchers a background to the inverse problem and its solution, with applications relating to atmospheric measurements. He introduces the stages in the reverse order than the usual approach in order to develop the learner's intuition about the nature of the inverse problem. Annotation copyrighted by Book News, Inc., Portland, OR.
Publisher: World Scientific
ISBN: 981022740X
Category : Science
Languages : en
Pages : 256
Book Description
Annotation Rodgers (U. of Oxford) provides graduate students and other researchers a background to the inverse problem and its solution, with applications relating to atmospheric measurements. He introduces the stages in the reverse order than the usual approach in order to develop the learner's intuition about the nature of the inverse problem. Annotation copyrighted by Book News, Inc., Portland, OR.
Introduction to Satellite Remote Sensing
Author: William Emery
Publisher: Elsevier
ISBN: 0128092599
Category : Science
Languages : en
Pages : 872
Book Description
Introduction to Satellite Remote Sensing: Atmosphere, Ocean and Land Applications is the first reference book to cover ocean applications, atmospheric applications, and land applications of remote sensing. Applications of remote sensing data are finding increasing application in fields as diverse as wildlife ecology and coastal recreation management. The technology engages electromagnetic sensors to measure and monitor changes in the earth's surface and atmosphere. The book opens with an introduction to the history of remote sensing, starting from when the phrase was first coined. It goes on to discuss the basic concepts of the various systems, including atmospheric and ocean, then closes with a detailed section on land applications. Due to the cross disciplinary nature of the authors' experience and the content covered, this is a must have reference book for all practitioners and students requiring an introduction to the field of remote sensing. - Provides study questions at the end of each chapter to aid learning - Covers all satellite remote sensing technologies, allowing readers to use the text as instructional material - Includes the most recent technologies and their applications, allowing the reader to stay up-to-date - Delves into laser sensing (LIDAR) and commercial satellites (DigitalGlobe) - Presents examples of specific satellite missions, including those in which new technology has been introduced
Publisher: Elsevier
ISBN: 0128092599
Category : Science
Languages : en
Pages : 872
Book Description
Introduction to Satellite Remote Sensing: Atmosphere, Ocean and Land Applications is the first reference book to cover ocean applications, atmospheric applications, and land applications of remote sensing. Applications of remote sensing data are finding increasing application in fields as diverse as wildlife ecology and coastal recreation management. The technology engages electromagnetic sensors to measure and monitor changes in the earth's surface and atmosphere. The book opens with an introduction to the history of remote sensing, starting from when the phrase was first coined. It goes on to discuss the basic concepts of the various systems, including atmospheric and ocean, then closes with a detailed section on land applications. Due to the cross disciplinary nature of the authors' experience and the content covered, this is a must have reference book for all practitioners and students requiring an introduction to the field of remote sensing. - Provides study questions at the end of each chapter to aid learning - Covers all satellite remote sensing technologies, allowing readers to use the text as instructional material - Includes the most recent technologies and their applications, allowing the reader to stay up-to-date - Delves into laser sensing (LIDAR) and commercial satellites (DigitalGlobe) - Presents examples of specific satellite missions, including those in which new technology has been introduced
Remote Sensing Physics
Author: Rick Chapman
Publisher: John Wiley & Sons
ISBN: 1119669073
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
An introduction to the physical principles underlying Earth remote sensing. The development of spaceborne remote sensing technology has led to a new understanding of the complexity of our planet by allowing us to observe Earth and its environments on spatial and temporal scales that are unavailable to terrestrial sensors. Remote Sensing Physics: An Introduction to Observing Earth from Space is a graduate-level text that examines the underlying physical principles and techniques used to make remote measurements, along with the algorithms used to extract geophysical information from those measurements. Volume highlights include: Basis for Earth remote sensing including ocean, land, and atmosphere Description of satellite orbits relevant for Earth observations Physics of passive sensing, including infrared, optical and microwave imagers Physics of active sensing, including radars and lidars Overview of current and future Earth observation missions Compendium of resources including an extensive bibliography Sample problem sets and answers available to instructors The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Publisher: John Wiley & Sons
ISBN: 1119669073
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
An introduction to the physical principles underlying Earth remote sensing. The development of spaceborne remote sensing technology has led to a new understanding of the complexity of our planet by allowing us to observe Earth and its environments on spatial and temporal scales that are unavailable to terrestrial sensors. Remote Sensing Physics: An Introduction to Observing Earth from Space is a graduate-level text that examines the underlying physical principles and techniques used to make remote measurements, along with the algorithms used to extract geophysical information from those measurements. Volume highlights include: Basis for Earth remote sensing including ocean, land, and atmosphere Description of satellite orbits relevant for Earth observations Physics of passive sensing, including infrared, optical and microwave imagers Physics of active sensing, including radars and lidars Overview of current and future Earth observation missions Compendium of resources including an extensive bibliography Sample problem sets and answers available to instructors The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
A Strategy for Active Remote Sensing Amid Increased Demand for Radio Spectrum
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309373085
Category : Science
Languages : en
Pages : 254
Book Description
Active remote sensing is the principal tool used to study and to predict short- and long-term changes in the environment of Earth - the atmosphere, the oceans and the land surfaces - as well as the near space environment of Earth. All of these measurements are essential to understanding terrestrial weather, climate change, space weather hazards, and threats from asteroids. Active remote sensing measurements are of inestimable benefit to society, as we pursue the development of a technological civilization that is economically viable, and seek to maintain the quality of our life. A Strategy for Active Remote Sensing Amid Increased Demand for Spectrum describes the threats, both current and future, to the effective use of the electromagnetic spectrum required for active remote sensing. This report offers specific recommendations for protecting and making effective use of the spectrum required for active remote sensing.
Publisher: National Academies Press
ISBN: 0309373085
Category : Science
Languages : en
Pages : 254
Book Description
Active remote sensing is the principal tool used to study and to predict short- and long-term changes in the environment of Earth - the atmosphere, the oceans and the land surfaces - as well as the near space environment of Earth. All of these measurements are essential to understanding terrestrial weather, climate change, space weather hazards, and threats from asteroids. Active remote sensing measurements are of inestimable benefit to society, as we pursue the development of a technological civilization that is economically viable, and seek to maintain the quality of our life. A Strategy for Active Remote Sensing Amid Increased Demand for Spectrum describes the threats, both current and future, to the effective use of the electromagnetic spectrum required for active remote sensing. This report offers specific recommendations for protecting and making effective use of the spectrum required for active remote sensing.
Remote Sounding of the Atmosphere from Space
Author: Hans-Jürgen Bolle
Publisher: Pergamon
ISBN:
Category : Science
Languages : en
Pages : 280
Book Description
Publisher: Pergamon
ISBN:
Category : Science
Languages : en
Pages : 280
Book Description
Remote Sensing
Author: Robert A. Schowengerdt
Publisher: Elsevier
ISBN: 0080516106
Category : Technology & Engineering
Languages : en
Pages : 585
Book Description
This book is a completely updated, greatly expanded version of the previously successful volume by the author. The Second Edition includes new results and data, and discusses a unified framework and rationale for designing and evaluating image processing algorithms.Written from the viewpoint that image processing supports remote sensing science, this book describes physical models for remote sensing phenomenology and sensors and how they contribute to models for remote-sensing data. The text then presents image processing techniques and interprets them in terms of these models. Spectral, spatial, and geometric models are used to introduce advanced image processing techniques such as hyperspectral image analysis, fusion of multisensor images, and digital elevationmodel extraction from stereo imagery.The material is suited for graduate level engineering, physical and natural science courses, or practicing remote sensing scientists. Each chapter is enhanced by student exercises designed to stimulate an understanding of the material. Over 300 figuresare produced specifically for this book, and numerous tables provide a rich bibliography of the research literature.
Publisher: Elsevier
ISBN: 0080516106
Category : Technology & Engineering
Languages : en
Pages : 585
Book Description
This book is a completely updated, greatly expanded version of the previously successful volume by the author. The Second Edition includes new results and data, and discusses a unified framework and rationale for designing and evaluating image processing algorithms.Written from the viewpoint that image processing supports remote sensing science, this book describes physical models for remote sensing phenomenology and sensors and how they contribute to models for remote-sensing data. The text then presents image processing techniques and interprets them in terms of these models. Spectral, spatial, and geometric models are used to introduce advanced image processing techniques such as hyperspectral image analysis, fusion of multisensor images, and digital elevationmodel extraction from stereo imagery.The material is suited for graduate level engineering, physical and natural science courses, or practicing remote sensing scientists. Each chapter is enhanced by student exercises designed to stimulate an understanding of the material. Over 300 figuresare produced specifically for this book, and numerous tables provide a rich bibliography of the research literature.
Remote Sensing of the Lower Atmosphere
Author: Graeme L. Stephens
Publisher: Oxford University Press, USA
ISBN:
Category : Nature
Languages : en
Pages : 560
Book Description
This book is an introductory graduate-level text on atmospheric remote sensing. The basic interaction between radiation and the atmosphere is examined, and illustrated with actual sensing examples. The focus is on understanding the interactions rather than on presenting mathematical details. The text also serves to supplement atmospheric radiation topics, placing the technology and its application in the broader perspective of contemporary meteorology and atmospheric science. Each chapter is followed by a series of exercises, and Appendix 2 gives five computer projects designed for classroom applications.
Publisher: Oxford University Press, USA
ISBN:
Category : Nature
Languages : en
Pages : 560
Book Description
This book is an introductory graduate-level text on atmospheric remote sensing. The basic interaction between radiation and the atmosphere is examined, and illustrated with actual sensing examples. The focus is on understanding the interactions rather than on presenting mathematical details. The text also serves to supplement atmospheric radiation topics, placing the technology and its application in the broader perspective of contemporary meteorology and atmospheric science. Each chapter is followed by a series of exercises, and Appendix 2 gives five computer projects designed for classroom applications.
Remote Sensing of the Earth from Space: Atmospheric Correction
Author: Kirill Y. Kondratyev
Publisher: Springer Science & Business Media
ISBN: 3642767478
Category : Science
Languages : en
Pages : 484
Book Description
The monograph being proposed for the English-speaking research community is concentrated on the atmospheric correction of satellite images as a part of thematic interpretation procedures while processing remote sensing data. For linguistic reasons a large section of the community may have been unaware of the progress made in Russia in this field of science and technology. Meanwhile, Russia was the first country to launch the first artificial satellite in 1957 and to obtain from space for the first time spectra of the Earth's atmosphere in the 1960's. New applications of the radiation transfer theory for the atmosphere underlying surface system appeared first in Russia in the 1970's. Direct and in verse problems of the atmospheric optics were then formulated giving the scientific basis for studies of natural resources from space. Since that time new mathematical treatments for the atmospheric correction procedures have been widely developed in Russia, including both analytical and numerical tech niques to simulate spectral, angular, and spatial distributions of the outgoing radiation in visual and infrared regions. The authors of the book were at the beginning of the scientific approach. A wide range of mathematical im provements to elaborate polinomial approximations for dependencies between atmospheric radiation field and parameters of space surveying was due to the necessity to process satellite images in real time using special software of ex isted computer means for the studies.
Publisher: Springer Science & Business Media
ISBN: 3642767478
Category : Science
Languages : en
Pages : 484
Book Description
The monograph being proposed for the English-speaking research community is concentrated on the atmospheric correction of satellite images as a part of thematic interpretation procedures while processing remote sensing data. For linguistic reasons a large section of the community may have been unaware of the progress made in Russia in this field of science and technology. Meanwhile, Russia was the first country to launch the first artificial satellite in 1957 and to obtain from space for the first time spectra of the Earth's atmosphere in the 1960's. New applications of the radiation transfer theory for the atmosphere underlying surface system appeared first in Russia in the 1970's. Direct and in verse problems of the atmospheric optics were then formulated giving the scientific basis for studies of natural resources from space. Since that time new mathematical treatments for the atmospheric correction procedures have been widely developed in Russia, including both analytical and numerical tech niques to simulate spectral, angular, and spatial distributions of the outgoing radiation in visual and infrared regions. The authors of the book were at the beginning of the scientific approach. A wide range of mathematical im provements to elaborate polinomial approximations for dependencies between atmospheric radiation field and parameters of space surveying was due to the necessity to process satellite images in real time using special software of ex isted computer means for the studies.
Space-based Remote Sensing of the Earth and Its Atmosphere
Author:
Publisher:
ISBN:
Category : Atmosphere
Languages : en
Pages : 164
Book Description
Publisher:
ISBN:
Category : Atmosphere
Languages : en
Pages : 164
Book Description
Remote Sensing of Clouds and Precipitation
Author: Constantin Andronache
Publisher: Springer
ISBN: 3319725831
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
This book presents current applications of remote sensing techniques for clouds and precipitation for the benefit of students, educators, and scientists. It covers ground-based systems such as weather radars and spaceborne instruments on satellites. Measurements and modeling of precipitation are at the core of weather forecasting, and long-term observations of the cloud system are vital to improving atmospheric models and climate projections. The first section of the book focuses on the use of ground-based weather radars to observe and measure precipitation and to detect and forecast storms, thunderstorms, and tornadoes. It also discusses the observation of clouds using ground-based millimeter radar. The second part of the book concentrates on spaceborne remote sensing of clouds and precipitation. It includes cases from the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission, using satellite radars to observe precipitation systems. Then, the focus is on global cloud observations from the ClaudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), including a perspective on the Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE) satellite. It also addresses global atmospheric water vapor profiling for clear and cloudy conditions using microwave observations. The final part of this volume provides a perspective into advances in cloud modeling using remote sensing observations.
Publisher: Springer
ISBN: 3319725831
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
This book presents current applications of remote sensing techniques for clouds and precipitation for the benefit of students, educators, and scientists. It covers ground-based systems such as weather radars and spaceborne instruments on satellites. Measurements and modeling of precipitation are at the core of weather forecasting, and long-term observations of the cloud system are vital to improving atmospheric models and climate projections. The first section of the book focuses on the use of ground-based weather radars to observe and measure precipitation and to detect and forecast storms, thunderstorms, and tornadoes. It also discusses the observation of clouds using ground-based millimeter radar. The second part of the book concentrates on spaceborne remote sensing of clouds and precipitation. It includes cases from the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission, using satellite radars to observe precipitation systems. Then, the focus is on global cloud observations from the ClaudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), including a perspective on the Earth Clouds, Aerosols, and Radiation Explorer (EarthCARE) satellite. It also addresses global atmospheric water vapor profiling for clear and cloudy conditions using microwave observations. The final part of this volume provides a perspective into advances in cloud modeling using remote sensing observations.