Regulation of Stress Induced Gene Expression in Saccharomyces Cerevisiae

Regulation of Stress Induced Gene Expression in Saccharomyces Cerevisiae PDF Author: Vasudha Bharatula
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Transcription initiation is complex process involving transcription factors(TF), co-activators, nucleosome remodelers and the pre-initiation complex (PIC);general transcription factors (GTF) and RNA polymerase II (RNAP2). The spatiotemporalorganization of these different proteins and their role in regulatingplasticity and selectivity of transcriptional reprogramming in various stressesremains unknown. I describe the role of Multicopy Suppressor of Snf1 mutation(Msn2); a stress responsive transcription factor, Mediator (coactivator) andnucleosome remodeling in fine-tuning gene expression in response to stress inyeast.Msn2 exhibits distinct patterns of nucleo-cytoplasmic oscillations indifferent stresses. I determined that Msn2 target genes exhibited fast or slowinduction kinetics in response to transient and persistent Msn2 nuclearoccupancy respectively. Chromatin immunoprecipitation studies revealed thatMsn2 binds promoters of common stress genes as well as condition specificgenes in nutrient and oxidative stresses, suggesting that TF dynamics could playa role in selective gene regulation in different stresses. Additionally, Msn2binding to ~30 oxidative genes was dependent on Yap1. However, deleting Msn2did not lead to a significant decrease in expression of oxidative stress responsegenes as did the absence of Yap1. These results suggest that indirectcooperativity between Msn2 and Yap1 could lead to selective promoter bindingbut the effects of such interactions on gene expression remain unclear.I studied the role of Mediator in native conditions, where its function has not been adequately addressed. Mediator occupies chromosomal interacting domains (CID), which mark boundaries between interacting genomic regions, suggesting that Mediator could play a significant role in higher-order genome organization along with functioning as a coactivator.Finally, I assessed the combined effect of Msn2, Mediator and nucleosome remodeling on gene expression upon nutrient deprivation. Both Msn2 and Mediator are selectively recruited to promoters of genes activated and repressed in nutrient stress. Genes activated by Msn2 exhibited rapid loss of nucleosomes, in an Msn2 dependent manner. In contrast, repression of genes was not accompanied by a significant gain in nucleosomes, suggesting additional mechanisms of repression could exist. The absence of Msn2, significantly decreased Mediator recruitment at promoters of target genes, indicating that Mediator- TF interactions are crucial for gene expression changes in stress. Interestingly, both RNAP2 and Mediator remained poised at promoters of repressed genes, possibly to re-initiate transcription once the stress has passed.These findings offer novel insights on how Msn2 regulates expression of specific genes depending on the environment by modulating its dynamics and genomic binding. The binding of Msn2 helps recruit Mediator and facilitate nucleosome loss at genes induced in stress. Whereas, repressed genes seems to possess Mediator and RNAP2 in an inactive form which could be the mechanism of repression and a way to activate these genes immediate after stress.

Regulation of Stress Induced Gene Expression in Saccharomyces Cerevisiae

Regulation of Stress Induced Gene Expression in Saccharomyces Cerevisiae PDF Author: Vasudha Bharatula
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Transcription initiation is complex process involving transcription factors(TF), co-activators, nucleosome remodelers and the pre-initiation complex (PIC);general transcription factors (GTF) and RNA polymerase II (RNAP2). The spatiotemporalorganization of these different proteins and their role in regulatingplasticity and selectivity of transcriptional reprogramming in various stressesremains unknown. I describe the role of Multicopy Suppressor of Snf1 mutation(Msn2); a stress responsive transcription factor, Mediator (coactivator) andnucleosome remodeling in fine-tuning gene expression in response to stress inyeast.Msn2 exhibits distinct patterns of nucleo-cytoplasmic oscillations indifferent stresses. I determined that Msn2 target genes exhibited fast or slowinduction kinetics in response to transient and persistent Msn2 nuclearoccupancy respectively. Chromatin immunoprecipitation studies revealed thatMsn2 binds promoters of common stress genes as well as condition specificgenes in nutrient and oxidative stresses, suggesting that TF dynamics could playa role in selective gene regulation in different stresses. Additionally, Msn2binding to ~30 oxidative genes was dependent on Yap1. However, deleting Msn2did not lead to a significant decrease in expression of oxidative stress responsegenes as did the absence of Yap1. These results suggest that indirectcooperativity between Msn2 and Yap1 could lead to selective promoter bindingbut the effects of such interactions on gene expression remain unclear.I studied the role of Mediator in native conditions, where its function has not been adequately addressed. Mediator occupies chromosomal interacting domains (CID), which mark boundaries between interacting genomic regions, suggesting that Mediator could play a significant role in higher-order genome organization along with functioning as a coactivator.Finally, I assessed the combined effect of Msn2, Mediator and nucleosome remodeling on gene expression upon nutrient deprivation. Both Msn2 and Mediator are selectively recruited to promoters of genes activated and repressed in nutrient stress. Genes activated by Msn2 exhibited rapid loss of nucleosomes, in an Msn2 dependent manner. In contrast, repression of genes was not accompanied by a significant gain in nucleosomes, suggesting additional mechanisms of repression could exist. The absence of Msn2, significantly decreased Mediator recruitment at promoters of target genes, indicating that Mediator- TF interactions are crucial for gene expression changes in stress. Interestingly, both RNAP2 and Mediator remained poised at promoters of repressed genes, possibly to re-initiate transcription once the stress has passed.These findings offer novel insights on how Msn2 regulates expression of specific genes depending on the environment by modulating its dynamics and genomic binding. The binding of Msn2 helps recruit Mediator and facilitate nucleosome loss at genes induced in stress. Whereas, repressed genes seems to possess Mediator and RNAP2 in an inactive form which could be the mechanism of repression and a way to activate these genes immediate after stress.

Yeast Stress Responses

Yeast Stress Responses PDF Author: Stefan Hohmann
Publisher: Springer Science & Business Media
ISBN: 3540456112
Category : Science
Languages : en
Pages : 398

Get Book Here

Book Description
Every cell has developed mechanisms to respond to changes in its environment and to adapt its growth and metabolism to unfavorable conditions. The unicellular eukaryote yeast has long proven as a particularly useful model system for the analysis of cellular stress responses, and the completion of the yeast genome sequence has only added to its power This volume comprehensively reviews both the basic features of the yeast genral stress response and the specific adapations to different stress types (nutrient depletion, osmotic and heat shock as well as salt and oxidative stress). It includes the latest findings in the field and discusses the implications for the analysis of stress response mechanisms in higher eukaryotes as well.

Regulation of Gene Expression and Signaling in Saccharomyces Cerevisiae Under Osmotic and Salt Stress

Regulation of Gene Expression and Signaling in Saccharomyces Cerevisiae Under Osmotic and Salt Stress PDF Author: João Carlos Serafim Varela
Publisher:
ISBN:
Category :
Languages : en
Pages : 134

Get Book Here

Book Description


Transcriptional Regulation of a Stress Inducible Gene of Saccharomyces Cerevisiae

Transcriptional Regulation of a Stress Inducible Gene of Saccharomyces Cerevisiae PDF Author: Naoko Kobayashi
Publisher:
ISBN:
Category : Genetic regulation
Languages : en
Pages : 422

Get Book Here

Book Description


Mechanism and Regulation of the Stress Response in Saccharomyces Cerevisiae

Mechanism and Regulation of the Stress Response in Saccharomyces Cerevisiae PDF Author: Eric Edward Powers
Publisher:
ISBN:
Category :
Languages : en
Pages : 356

Get Book Here

Book Description


Regulation of Starvation-induced Gene Expression in Saccharomyces Cerevisiae

Regulation of Starvation-induced Gene Expression in Saccharomyces Cerevisiae PDF Author: Zhenzhen Quan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks

Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks PDF Author: Peter Csermely
Publisher: Springer Science & Business Media
ISBN: 0387399755
Category : Science
Languages : en
Pages : 218

Get Book Here

Book Description
This book makes a novel synthesis of the molecular aspects of the stress response and long term adaptation processes with the system biology approach of biological networks. Authored by an exciting mixture of top experts and young rising stars, it provides a comprehensive summary of the field and identifies future trends.

A Handbook of Statistical Analyses using R, Third Edition

A Handbook of Statistical Analyses using R, Third Edition PDF Author: Torsten Hothorn
Publisher: CRC Press
ISBN: 1482204584
Category : Mathematics
Languages : en
Pages : 454

Get Book Here

Book Description
Like the best-selling first two editions, A Handbook of Statistical Analyses using R, Third Edition provides an up-to-date guide to data analysis using the R system for statistical computing. The book explains how to conduct a range of statistical analyses, from simple inference to recursive partitioning to cluster analysis. New to the Third Edition Three new chapters on quantile regression, missing values, and Bayesian inference Extra material in the logistic regression chapter that describes a regression model for ordered categorical response variables Additional exercises More detailed explanations of R code New section in each chapter summarizing the results of the analyses Updated version of the HSAUR package (HSAUR3), which includes some slides that can be used in introductory statistics courses Whether you’re a data analyst, scientist, or student, this handbook shows you how to easily use R to effectively evaluate your data. With numerous real-world examples, it emphasizes the practical application and interpretation of results.

Dynamic Signaling and Adaptation in Saccharomyces Cerevisiae Stress Response Pathways

Dynamic Signaling and Adaptation in Saccharomyces Cerevisiae Stress Response Pathways PDF Author: Zohreh AkhavanAghdam
Publisher:
ISBN:
Category :
Languages : en
Pages : 155

Get Book Here

Book Description
Living cells respond to environmental cues through complex signaling and gene regulatory networks. A common theme throughout this thesis will be exploring design principles in biological networks and how they operate dynamically to process information and make decisions. In Chapter 1, we tackle how different types of stresses induce distinct nuclear translocation dynamics of Msn2, an outstanding question in the field. In the absence of stress, PKA phosphorylates Msn2, causing it to be exported out of the nucleus. In response to stress, PKA activity is inhibited, Msn2 is dephosphorylated and translocated into the nucleus. In response to glucose limitation, Msn2 exhibits an initial homogenous pulse of nuclear translocation followed by sporadic nuclear pulses with dose-dependent frequency, but in response to osmotic stress Msn2 undergoes a single translocation pulse with dose-dependent duration. We hypothesized that the difference between glucose limitation and osmotic stress-induced Msn2 dynamics might be a result of glucose limitation-dependent Snf1 activation, since previous studies suggest that Snf1 and PKA mutually inhibit each other. We use modeling and experiments to demonstrate that these different upstream network structures could, in fact, be responsible for the differences we see in Msn2 translocation dynamics. In Chapter 2, we study a recurring scheme in gene regulatory networks, which is combinatorial gene regulation by seemingly redundant transcription factors (TFs), using time-lapse microscopy and microfluidics. We use the seemingly redundant yeast homologous stress responsive TFs Msn2 and Msn4 as a model to quantitatively study the functional relevance of closely related TFs in the same single cells and find that Msn2 and Msn4 have non-redundant and distinct functions in combinatorial gene regulation. In response to a transient input, either Msn2 or Msn4 alone is sufficient to induce the expression of target genes with fast kinetics promoters. Target genes with slow kinetics promoters, however, require activation of both Msn2 and Msn4 in these conditions. Importantly, slow kinetic promoter activation is dependent on duration of the upstream signal because in response to a prolonged input, slow kinetic promoter activation no longer requires both Msn2 and Msn4. Thus, in Chapter 2, we determine that coordinated gene regulation by seemingly redundant TFs is not fixed, but rather dependent on the dynamics of upstream signals. In Chapter 3, we demonstrate that cells retain a memory of many of upstream signaling events that occur in response to stress, which primes the cells to respond to future severe stress events. We use microfluidics and time-lapse microscopy to modulate the amplitude and duration of priming stimulus and also increase the break time in between the priming stimulus and severe stress. Using this system, we have determined that cells acquire an amplitude-dependent short-term memory of priming stimulus, which is induced and lost rapidly, and a duration-dependent long-term memory which is stable for a long period of time before finally declining after 100 minutes. We use this information about the dynamical specificity of different types of cellular memory and their stability to determine the cellular pathways responsible for the observed memory.

Synthetic Biology

Synthetic Biology PDF Author: Christina Smolke
Publisher: John Wiley & Sons
ISBN: 3527688099
Category : Science
Languages : en
Pages : 532

Get Book Here

Book Description
A review of the interdisciplinary field of synthetic biology, from genome design to spatial engineering. Written by an international panel of experts, Synthetic Biology draws from various areas of research in biology and engineering and explores the current applications to provide an authoritative overview of this burgeoning field. The text reviews the synthesis of DNA and genome engineering and offers a discussion of the parts and devices that control protein expression and activity. The authors include information on the devices that support spatial engineering, RNA switches and explore the early applications of synthetic biology in protein synthesis, generation of pathway libraries, and immunotherapy. Filled with the most recent research, compelling discussions, and unique perspectives, Synthetic Biology offers an important resource for understanding how this new branch of science can improve on applications for industry or biological research.