Reconstruction of Small Inhomogeneities from Boundary Measurements

Reconstruction of Small Inhomogeneities from Boundary Measurements PDF Author: Habib Ammari
Publisher: Springer Science & Business Media
ISBN: 9783540224839
Category : Mathematics
Languages : en
Pages : 252

Get Book Here

Book Description
This is the first book to provide a systematic exposition of promising techniques for the reconstruction of small inhomogeneities from boundary measurements. In particular, theoretical results and numerical procedures for the inverse problems for the conductivity equation, the Lamé system, as well as the Helmholtz equation are discussed in a readable and informative manner. The general approach developed in this book is based on layer potential techniques and modern asymptotic analysis of partial differential equations. The book is particularly suitable for graduate students in mathematics.

Reconstruction of Small Inhomogeneities from Boundary Measurements

Reconstruction of Small Inhomogeneities from Boundary Measurements PDF Author: Habib Ammari
Publisher: Springer Science & Business Media
ISBN: 9783540224839
Category : Mathematics
Languages : en
Pages : 252

Get Book Here

Book Description
This is the first book to provide a systematic exposition of promising techniques for the reconstruction of small inhomogeneities from boundary measurements. In particular, theoretical results and numerical procedures for the inverse problems for the conductivity equation, the Lamé system, as well as the Helmholtz equation are discussed in a readable and informative manner. The general approach developed in this book is based on layer potential techniques and modern asymptotic analysis of partial differential equations. The book is particularly suitable for graduate students in mathematics.

Partial Differential Equations and Inverse Problems

Partial Differential Equations and Inverse Problems PDF Author: Carlos Conca
Publisher: American Mathematical Soc.
ISBN: 0821834487
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
This proceedings volume is a collection of articles from the Pan-American Advanced Studies Institute on partial differential equations, nonlinear analysis and inverse problems held in Santiago (Chile). Interactions among partial differential equations, nonlinear analysis, and inverse problems have produced remarkable developments over the last couple of decades. This volume contains survey articles reflecting the work of leading experts who presented minicourses at the event. Contributors include J. Busca, Y. Capdeboscq, M.S. Vogelius, F. A. Grunbaum, L. F. Matusevich, M. de Hoop, and P. Kuchment. The volume is suitable for graduate students and researchers interested in partial differential equations and their applications in nonlinear analysis and inverse problems.

Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging PDF Author: Otmar Scherzer
Publisher: Springer Science & Business Media
ISBN: 0387929193
Category : Mathematics
Languages : en
Pages : 1626

Get Book Here

Book Description
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

Mathematical Modeling in Biomedical Imaging I

Mathematical Modeling in Biomedical Imaging I PDF Author: Habib Ammari
Publisher: Springer Science & Business Media
ISBN: 3642034438
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
This volume gives an introduction to a fascinating research area to applied mathematicians. It is devoted to providing the exposition of promising analytical and numerical techniques for solving challenging biomedical imaging problems, which trigger the investigation of interesting issues in various branches of mathematics.

Inverse Problems, Multi-Scale Analysis, and Effective Medium Theory

Inverse Problems, Multi-Scale Analysis, and Effective Medium Theory PDF Author: Habib Ammari
Publisher: American Mathematical Soc.
ISBN: 0821839683
Category : Mathematics
Languages : en
Pages : 278

Get Book Here

Book Description
Recent developments in inverse problems, multi-scale analysis and effective medium theory reveal that these fields share several fundamental concepts. This book is the proceedings of the research conference, ``Workshop in Seoul: Inverse Problems, Multi-Scale Analysis and Homogenization,'' held at Seoul National University, June 22-24, 2005. It highlights the benefits of sharing ideas among these areas, of merging the expertise of scientists working there, and of directing interest towards challenging issues such as imaging nanoscience and biological imaging. Contributions are written by prominent experts and are of interest to researchers and graduate students interested in partial differential equations and applications.

IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials

IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials PDF Author: Martin Philip Bendsoe
Publisher: Springer Science & Business Media
ISBN: 1402047525
Category : Technology & Engineering
Languages : en
Pages : 602

Get Book Here

Book Description
This volume offers edited papers presented at the IUTAM-Symposium Topological design optimization of structures, machines and materials - status and perspectives, October 2005. The papers cover the application of topological design optimization to fluid-solid interaction problems, acoustics problems, and to problems in biomechanics, as well as to other multiphysics problems. Also in focus are new basic modelling paradigms, covering new geometry modelling such as level-set methods and topological derivatives.

Mathematical and Statistical Methods for Multistatic Imaging

Mathematical and Statistical Methods for Multistatic Imaging PDF Author: Habib Ammari
Publisher: Springer
ISBN: 3319025856
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description
This book covers recent mathematical, numerical, and statistical approaches for multistatic imaging of targets with waves at single or multiple frequencies. The waves can be acoustic, elastic or electromagnetic. They are generated by point sources on a transmitter array and measured on a receiver array. An important problem in multistatic imaging is to quantify and understand the trade-offs between data size, computational complexity, signal-to-noise ratio, and resolution. Another fundamental problem is to have a shape representation well suited to solving target imaging problems from multistatic data. In this book the trade-off between resolution and stability when the data are noisy is addressed. Efficient imaging algorithms are provided and their resolution and stability with respect to noise in the measurements analyzed. It also shows that high-order polarization tensors provide an accurate representation of the target. Moreover, a dictionary-matching technique based on new invariants for the generalized polarization tensors is introduced. Matlab codes for the main algorithms described in this book are provided. Numerical illustrations using these codes in order to highlight the performance and show the limitations of numerical approaches for multistatic imaging are presented.

An Introduction to Mathematics of Emerging Biomedical Imaging

An Introduction to Mathematics of Emerging Biomedical Imaging PDF Author: Habib Ammari
Publisher: Springer Science & Business Media
ISBN: 3540795537
Category : Medical
Languages : en
Pages : 198

Get Book Here

Book Description
Biomedical imaging is a fascinating research area to applied mathematicians. Challenging imaging problems arise and they often trigger the investigation of fundamental problems in various branches of mathematics. This is the first book to highlight the most recent mathematical developments in emerging biomedical imaging techniques. The main focus is on emerging multi-physics and multi-scales imaging approaches. For such promising techniques, it provides the basic mathematical concepts and tools for image reconstruction. Further improvements in these exciting imaging techniques require continued research in the mathematical sciences, a field that has contributed greatly to biomedical imaging and will continue to do so. The volume is suitable for a graduate-level course in applied mathematics and helps prepare the reader for a deeper understanding of research areas in biomedical imaging.

Layer Potential Techniques in Spectral Analysis

Layer Potential Techniques in Spectral Analysis PDF Author: Habib Ammari
Publisher: American Mathematical Soc.
ISBN: 0821847848
Category : Mathematics
Languages : en
Pages : 211

Get Book Here

Book Description
Since the early part of the twentieth century, the use of integral equations has developed into a range of tools for the study of partial differential equations. This includes the use of single- and double-layer potentials to treat classical boundary value problems. The aim of this book is to give a self-contained presentation of an asymptotic theory for eigenvalue problems using layer potential techniques with applications in the fields of inverse problems, band gap structures, and optimal design, in particular the optimal design of photonic and phononic crystals. Throughout this book, it is shown how powerful the layer potentials techniques are for solving not only boundary value problems but also eigenvalue problems if they are combined with the elegant theory of Gohberg and Sigal on meromorphic operator-valued functions. The general approach in this book is developed in detail for eigenvalue problems for the Laplacian and the Lame system in the following two situations: one under variation of domains or boundary conditions and the other due to the presence of inclusions. The book will be of interest to researchers and graduate students working in the fields of partial differential equations, integral equations, and inverse problems. Researchers in engineering and physics may also find this book helpful.

An Elastic Model for Volcanology

An Elastic Model for Volcanology PDF Author: Andrea Aspri
Publisher: Springer Nature
ISBN: 3030314758
Category : Mathematics
Languages : en
Pages : 136

Get Book Here

Book Description
This monograph presents a rigorous mathematical framework for a linear elastic model arising from volcanology that explains deformation effects generated by inflating or deflating magma chambers in the Earth’s interior. From a mathematical perspective, these modeling assumptions manifest as a boundary value problem that has long been known by researchers in volcanology, but has not, until now, been given a thorough mathematical treatment. This mathematical study gives an explicit formula for the solution of the boundary value problem which generalizes the few well-known, explicit solutions found in geophysics literature. Using two distinct analytical approaches—one involving weighted Sobolev spaces, and the other using single and double layer potentials—the well-posedness of the elastic model is proven. An Elastic Model for Volcanology will be of particular interest to mathematicians researching inverse problems, as well as geophysicists studying volcanology.