Recent Advances in Robot Path Planning Algorithms: a Review of Theory and Experiment

Recent Advances in Robot Path Planning Algorithms: a Review of Theory and Experiment PDF Author: Hadi Jahanshahi
Publisher:
ISBN: 9781536167955
Category :
Languages : en
Pages : 135

Get Book Here

Book Description
The dominant theme of this book is to introduce the different path planning methods and present some of the most appropriate ones for robotic routing; methods that are capable of running on a variety of robots and are resistant to disturbances; being real-time, being autonomous, and the ability to identify high risk areas and risk management are the other features that will be mentioned in the introduction of the methods. The introduction of the profound significance of the robots and delineation of the navigation and routing theme is provided in the first chapter of the book. The second chapter is concerned with the subject of routing in unknown environments. In the first part of this chapter, the family of bug algorithms including are described. In the following, several conventional methods are submitted. The last part of this chapter is dedicated to the introduction of two recently developed routing methods. In Chapter 3, routing is reviewed in the known environment in which the robot either utilizes the created maps by extraneous sources or makes use of the sensor in order to prepare the maps from the local environment. The robot path planning relying on the robot vision sensors and applicable computing hardware are concentrated in the fourth chapter. The first part of this chapter deals with routing methods supported mapping capabilities. The second part manages the routing dependent on vision sensor typically known as the best sensor within the routing subject. The movement of two-dimensional robots with two or three degrees of freedom is analyzed within the third part of this chapter. In Chapter 5, the performance of a few of the foremost important routing methods initiating from the second to fourth chapters is conferred regarding the implementation in various environments. The first part of this chapter is engaged in the implementation of the algorithms Bug1, Bug2, and Distbug on the pioneering robot. In the second part, a theoretical technique is planned to boost the robot's performance in line with obstacle collision avoidance. This method, underlying the tangential escape, seeks to proceed the robot through various obstacles with curved corners. In the third and fourth parts of this chapter, path planning in different environments is preceded in the absence and the presence of danger space. Accordingly, four approaches, named artificial fuzzy potential field, linguistic technique, Markov decision making processes, and fuzzy Markov decision making have been proposed in two following parts and enforced on the Nao humanoid robot.

Recent Advances in Robot Path Planning Algorithms: a Review of Theory and Experiment

Recent Advances in Robot Path Planning Algorithms: a Review of Theory and Experiment PDF Author: Hadi Jahanshahi
Publisher:
ISBN: 9781536167955
Category :
Languages : en
Pages : 135

Get Book Here

Book Description
The dominant theme of this book is to introduce the different path planning methods and present some of the most appropriate ones for robotic routing; methods that are capable of running on a variety of robots and are resistant to disturbances; being real-time, being autonomous, and the ability to identify high risk areas and risk management are the other features that will be mentioned in the introduction of the methods. The introduction of the profound significance of the robots and delineation of the navigation and routing theme is provided in the first chapter of the book. The second chapter is concerned with the subject of routing in unknown environments. In the first part of this chapter, the family of bug algorithms including are described. In the following, several conventional methods are submitted. The last part of this chapter is dedicated to the introduction of two recently developed routing methods. In Chapter 3, routing is reviewed in the known environment in which the robot either utilizes the created maps by extraneous sources or makes use of the sensor in order to prepare the maps from the local environment. The robot path planning relying on the robot vision sensors and applicable computing hardware are concentrated in the fourth chapter. The first part of this chapter deals with routing methods supported mapping capabilities. The second part manages the routing dependent on vision sensor typically known as the best sensor within the routing subject. The movement of two-dimensional robots with two or three degrees of freedom is analyzed within the third part of this chapter. In Chapter 5, the performance of a few of the foremost important routing methods initiating from the second to fourth chapters is conferred regarding the implementation in various environments. The first part of this chapter is engaged in the implementation of the algorithms Bug1, Bug2, and Distbug on the pioneering robot. In the second part, a theoretical technique is planned to boost the robot's performance in line with obstacle collision avoidance. This method, underlying the tangential escape, seeks to proceed the robot through various obstacles with curved corners. In the third and fourth parts of this chapter, path planning in different environments is preceded in the absence and the presence of danger space. Accordingly, four approaches, named artificial fuzzy potential field, linguistic technique, Markov decision making processes, and fuzzy Markov decision making have been proposed in two following parts and enforced on the Nao humanoid robot.

Planning Algorithms

Planning Algorithms PDF Author: Steven M. LaValle
Publisher: Cambridge University Press
ISBN: 9780521862059
Category : Computers
Languages : en
Pages : 844

Get Book Here

Book Description
Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that tightly integrates a vast body of literature from several fields into a coherent source for teaching and reference in a wide variety of applications. Difficult mathematical material is explained through hundreds of examples and illustrations.

Communication and Intelligent Systems

Communication and Intelligent Systems PDF Author: Harish Sharma
Publisher: Springer Nature
ISBN: 9811610894
Category : Technology & Engineering
Languages : en
Pages : 1040

Get Book Here

Book Description
This book gathers selected research papers presented at the International Conference on Communication and Intelligent Systems (ICCIS 2020), organized jointly by Birla Institute of Applied Sciences, Uttarakhand, and Soft Computing Research Society during 26–27 December 2020. This book presents a collection of state-of-the-art research work involving cutting-edge technologies for communication and intelligent systems. Over the past few years, advances in artificial intelligence and machine learning have sparked new research efforts around the globe, which explore novel ways of developing intelligent systems and smart communication technologies. The book presents single- and multi-disciplinary research on these themes in order to make the latest results available in a single, readily accessible source.

Principles of Robot Motion

Principles of Robot Motion PDF Author: Howie Choset
Publisher: MIT Press
ISBN: 9780262033275
Category : Technology & Engineering
Languages : en
Pages : 642

Get Book Here

Book Description
A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts. Robot motion planning has become a major focus of robotics. Research findings can be applied not only to robotics but to planning routes on circuit boards, directing digital actors in computer graphics, robot-assisted surgery and medicine, and in novel areas such as drug design and protein folding. This text reflects the great advances that have taken place in the last ten years, including sensor-based planning, probabalistic planning, localization and mapping, and motion planning for dynamic and nonholonomic systems. Its presentation makes the mathematical underpinnings of robot motion accessible to students of computer science and engineering, rleating low-level implementation details to high-level algorithmic concepts.

Frontiers in Intelligent Computing: Theory and Applications

Frontiers in Intelligent Computing: Theory and Applications PDF Author: Suresh Chandra Satapathy
Publisher: Springer Nature
ISBN: 9811399204
Category : Technology & Engineering
Languages : en
Pages : 381

Get Book Here

Book Description
This book presents the proceedings of the 7th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA 2018), held at Duy Tan University, Da Nang, Vietnam. The event brought together researchers, scientists, engineers, and practitioners to exchange ideas and experiences in the domain of intelligent computing theories with prospective applications in various engineering disciplines. These proceedings are divided into two volumes. Covering broad areas of intelligent engineering informatics, with papers exploring both the theoretical and practical aspects of various areas like ANN and genetic algorithms, human–computer interaction, intelligent control optimization, intelligent e-learning systems, machine learning, mobile computing, and multi-agent systems, this volume is a valuable resource for postgraduate students in various engineering disciplines.

Robot Motion Planning

Robot Motion Planning PDF Author: Jean-Claude Latombe
Publisher: Springer Science & Business Media
ISBN: 1461540224
Category : Technology & Engineering
Languages : en
Pages : 668

Get Book Here

Book Description
One of the ultimate goals in Robotics is to create autonomous robots. Such robots will accept high-level descriptions of tasks and will execute them without further human intervention. The input descriptions will specify what the user wants done rather than how to do it. The robots will be any kind of versatile mechanical device equipped with actuators and sensors under the control of a computing system. Making progress toward autonomous robots is of major practical inter est in a wide variety of application domains including manufacturing, construction, waste management, space exploration, undersea work, as sistance for the disabled, and medical surgery. It is also of great technical interest, especially for Computer Science, because it raises challenging and rich computational issues from which new concepts of broad useful ness are likely to emerge. Developing the technologies necessary for autonomous robots is a formidable undertaking with deep interweaved ramifications in auto mated reasoning, perception and control. It raises many important prob lems. One of them - motion planning - is the central theme of this book. It can be loosely stated as follows: How can a robot decide what motions to perform in order to achieve goal arrangements of physical objects? This capability is eminently necessary since, by definition, a robot accomplishes tasks by moving in the real world. The minimum one would expect from an autonomous robot is the ability to plan its x Preface own motions.

Applied mechanics reviews

Applied mechanics reviews PDF Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400

Get Book Here

Book Description


Vision-Based Mobile Robot Control and Path Planning Algorithms in Obstacle Environments Using Type-2 Fuzzy Logic

Vision-Based Mobile Robot Control and Path Planning Algorithms in Obstacle Environments Using Type-2 Fuzzy Logic PDF Author: Mahmut Dirik
Publisher: Springer Nature
ISBN: 3030692477
Category : Technology & Engineering
Languages : en
Pages : 143

Get Book Here

Book Description
The book includes topics, such as: path planning, avoiding obstacles, following the path, go-to-goal control, localization, and visual-based motion control. The theoretical concepts are illustrated with a developed control architecture with soft computing and artificial intelligence methods. The proposed vision-based motion control strategy involves three stages. The first stage consists of the overhead camera calibration and the configuration of the working environment. The second stage consists of a path planning strategy using several traditional path planning algorithms and proposed planning algorithm. The third stage consists of the path tracking process using previously developed Gauss and Decision Tree control approaches and the proposed Type-1 and Type-2 controllers. Two kinematic structures are utilized to acquire the input values of controllers. These are Triangle Shape-Based Controller Design, which was previously developed and Distance-Based Triangle Structure that is used for the first time in conducted experiments. Four different control algorithms, Type-1 fuzzy logic, Type-2 Fuzzy Logic, Decision Tree Control, and Gaussian Control have been used in overall system design. The developed system includes several modules that simplify characterizing the motion control of the robot and ensure that it maintains a safe distance without colliding with any obstacles on the way to the target. The topics of the book are extremely relevant in many areas of research, as well as in education in courses in computer science, electrical and mechanical engineering and in mathematics at the graduate and undergraduate levels.

Learning for Adaptive and Reactive Robot Control

Learning for Adaptive and Reactive Robot Control PDF Author: Aude Billard
Publisher: MIT Press
ISBN: 0262367017
Category : Technology & Engineering
Languages : en
Pages : 425

Get Book Here

Book Description
Methods by which robots can learn control laws that enable real-time reactivity using dynamical systems; with applications and exercises. This book presents a wealth of machine learning techniques to make the control of robots more flexible and safe when interacting with humans. It introduces a set of control laws that enable reactivity using dynamical systems, a widely used method for solving motion-planning problems in robotics. These control approaches can replan in milliseconds to adapt to new environmental constraints and offer safe and compliant control of forces in contact. The techniques offer theoretical advantages, including convergence to a goal, non-penetration of obstacles, and passivity. The coverage of learning begins with low-level control parameters and progresses to higher-level competencies composed of combinations of skills. Learning for Adaptive and Reactive Robot Control is designed for graduate-level courses in robotics, with chapters that proceed from fundamentals to more advanced content. Techniques covered include learning from demonstration, optimization, and reinforcement learning, and using dynamical systems in learning control laws, trajectory planning, and methods for compliant and force control . Features for teaching in each chapter: applications, which range from arm manipulators to whole-body control of humanoid robots; pencil-and-paper and programming exercises; lecture videos, slides, and MATLAB code examples available on the author’s website . an eTextbook platform website offering protected material[EPS2] for instructors including solutions.

Learning Motor Skills

Learning Motor Skills PDF Author: Jens Kober
Publisher: Springer
ISBN: 3319031945
Category : Technology & Engineering
Languages : en
Pages : 201

Get Book Here

Book Description
This book presents the state of the art in reinforcement learning applied to robotics both in terms of novel algorithms and applications. It discusses recent approaches that allow robots to learn motor. skills and presents tasks that need to take into account the dynamic behavior of the robot and its environment, where a kinematic movement plan is not sufficient. The book illustrates a method that learns to generalize parameterized motor plans which is obtained by imitation or reinforcement learning, by adapting a small set of global parameters and appropriate kernel-based reinforcement learning algorithms. The presented applications explore highly dynamic tasks and exhibit a very efficient learning process. All proposed approaches have been extensively validated with benchmarks tasks, in simulation and on real robots. These tasks correspond to sports and games but the presented techniques are also applicable to more mundane household tasks. The book is based on the first author’s doctoral thesis, which won the 2013 EURON Georges Giralt PhD Award.