Rate-Distortion Modeling for Efficient H.264/AVC Video Coding

Rate-Distortion Modeling for Efficient H.264/AVC Video Coding PDF Author: 涂育光
Publisher:
ISBN:
Category :
Languages : en
Pages : 149

Get Book Here

Book Description

Rate-Distortion Modeling for Efficient H.264/AVC Video Coding

Rate-Distortion Modeling for Efficient H.264/AVC Video Coding PDF Author: 涂育光
Publisher:
ISBN:
Category :
Languages : en
Pages : 149

Get Book Here

Book Description


Computational Complexity Management of H.264/AVC Video Coding Standard

Computational Complexity Management of H.264/AVC Video Coding Standard PDF Author: Serdar Burak Solak
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Low-complexity Mode Selection for Rate-distortion Optimal Video Coding

Low-complexity Mode Selection for Rate-distortion Optimal Video Coding PDF Author: Hyungjoon Kim
Publisher:
ISBN: 9781109991765
Category :
Languages : en
Pages : 88

Get Book Here

Book Description
In addition to our theoretical work, we present practical solutions to real-time implementation of encoder modules including our proposed mode selection method on digital signal processors. First, we investigate the features provided by most of the recent digital signal processors, for example, hierarchical memory structure and efficient data transfer between on-chip and off-chip memory, and then present practical approaches for real-time implementation of a video encoder system with efficient use of the features.

Rate Distortion Optimization for Interprediction in H.264/AVC Video Coding

Rate Distortion Optimization for Interprediction in H.264/AVC Video Coding PDF Author: Jonathan Patrick Skeans
Publisher:
ISBN:
Category : Rate distortion theory
Languages : en
Pages : 59

Get Book Here

Book Description
Part 10 of MPEG-4 describes the Advanced Video Coding (AVC) method widely known as H.264. H.264 is the product of a collaborative effort known as the Joint Video Team(JVT). The final draft of the standard was completed in May of 2003 and since then H.264 has become one of the most commonly used formats for compression [1]. H.264, unlike previous standards, describes a myriad of coding options that involve variable block size inter prediction methods, nine different intra prediction modes, multi frame prediction and B frame prediction. There are a huge number of options for coding that will tend to generate a different number of coded bits and different reconstruction quality. A video encoder is challenged to minimize coded bitrate and maximize quality. However, choosing the coding mode of a macroblock to achieve this is a difficult problem due to the large number of coding combinations and parameters. Rate Distortion Optimization is an effective technique for choosing the 'best' coding mode for a macroblock. This thesis presents two features of an H.264 encoder, multi frame prediction and B frame prediction. Additionally, a Rate Distortion Optimization scheme is implemented with the features to improve overall performance of the encoder.

Improving the Rate-Distortion Performance in Distributed Video Coding

Improving the Rate-Distortion Performance in Distributed Video Coding PDF Author: Yaser Mohammad Taheri
Publisher:
ISBN:
Category :
Languages : en
Pages : 136

Get Book Here

Book Description
Distributed video coding is a coding paradigm, which allows encoding of video frames at a complexity that is substantially lower than that in conventional video coding schemes. This feature makes it suitable for some emerging applications such as wireless surveillance video and mobile camera phones. In distributed video coding, a subset of frames in the video sequence, known as the key frames, are encoded using a conventional intra-frame encoder, such as H264/AVC in the intra mode, and then transmitted to the decoder. The remaining frames, known as the Wyner-Ziv frames, are encoded based on the Wyner-Ziv principle by using the channel codes, such as LDPC codes. In the transform-domain distributed video coding, each Wyner-Ziv frame undergoes a 4x4 block DCT transform and the resulting DCT coefficients are grouped into DCT bands. The bitplaines corresponding to each DCT band are encoded by a channel encoder, for example an LDPCA encoder, one after another. The resulting error-correcting bits are retained in a buffer at the encoder and transmitted incrementally as needed by the decoder. At the decoder, the key frames are first decoded. The decoded key frames are then used to generate a side information frame as an initial estimate of the corresponding Wyner-Ziv frame, usually by employing an interpolation method. The difference between the DCT band in the side information frame and the corresponding one in the Wyner-Ziv frame, referred to as the correlation noise, is often modeled by Laplacian distribution. A soft-input information for each bit in the bitplane is obtained using this correlation noise model and the corresponding DCT band of the side information frame. The channel decoder then uses this soft-input information along with some error-correcting bits sent by the encoder to decode the bitplanes of each DCT band in each of the Wyner-Ziv frames. Hence, an accurate estimation of the correlation noise model parameter(s) and generation of high-quality side information are required for reliable soft-input information for the bitplanes in the decoder, which in turn leads to a more efficient decoding. Consequently, less error-correcting bits need to be transmitted from the encoder to the decoder to decode the bitplanes, leading to a better compression efficiency and rate-distortion performance. The correlation noise is not stationary and its statistics vary within each Wyner-Ziv frame and within its corresponding DCT bands. Hence, it is difficult to find an accurate model for the correlation noise and estimate its parameters precisely at the decoder. Moreover, in existing schemes the parameters of the correlation noise for each DCT band are estimated before the decoder starts to decode the bitplanes of that DCT band and they are not modified and kept unchanged during decoding process of the bitplanes. Another problem of concern is that, since side information frame is generated in the decoder using the temporal interpolation between the previously decoded frames, the quality of the side information frames is generally poor when the motions between the frames are non-linear. Hence, generating a high-quality side information is a challenging problem. This thesis is concerned with the study of accurate estimation of correlation noise model parameters and increasing in the quality of the side information from the standpoint of improving the rate-distortion performance in distributed video coding. A new scheme is proposed for the estimation of the correlation noise parameters wherein the decoder decodes simultaneously all the bitplanes of a DCT band in a Wyner-Ziv frame and then refines the parameters of the correlation noise model of the band in an iterative manner. This process is carried out on an augmented factor graph using a new recursive message passing algorithm, with the side information generated and kept unchanged during the decoding of the Wyner-Ziv frame. Extensive simulations are carried out showing that the proposed decoder leads to an improved rate-distortion performance in comparison to the original DISCOVER codec and in another DVC codec employing side information frame refinement, particularly for video sequences with high motion content. In the second part of this work, a new algorithm for the generation of the side information is proposed to refine the initial side information frame using the additional information obtained after decoding the previous DCT bands of a Wyner-Ziv frame. The simulations are carried out demonstrating that the proposed algorithm provides a performance superior to that of schemes employing the other side information refinement mechanisms. Finally, it is shown that incorporating the proposed algorithm for refining the side information into the decoder proposed in the first part of the thesis leads to a further improvement in the rate-distortion performance of the DVC codec.

Advances in Multimedia Information Processing - PCM 2004

Advances in Multimedia Information Processing - PCM 2004 PDF Author: Kiyoharu Aizawa
Publisher: Springer Science & Business Media
ISBN: 3540239855
Category : Computers
Languages : en
Pages : 820

Get Book Here

Book Description
Welcome to the proceedings of the 5th Paci?c Rim Conference on Multimedia (PCM 2004) held in Tokyo Waterfront City, Japan, November 30–December 3, 2004. Following the success of the preceding conferences, PCM 2000 in Sydney, PCM 2001 in Beijing, PCM 2002 in Hsinchu, and PCM 2003 in Singapore, the ?fth PCM brought together the researchers, developers, practitioners, and educators in the ?eld of multimedia. Theoretical breakthroughs and practical systems were presented at this conference, thanks to the support of the IEEE Circuits and Systems Society, IEEE Region 10 and IEEE Japan Council, ACM SIGMM, IEICE and ITE. PCM2004featuredacomprehensiveprogramincludingkeynotetalks,regular paperpresentations,posters,demos,andspecialsessions.Wereceived385papers andthenumberofsubmissionswasthelargestamongrecentPCMs.Amongsuch a large number of submissions, we accepted only 94 oral presentations and 176 poster presentations. Seven special sessions were also organized by world-leading researchers. We kindly acknowledge the great support provided in the reviewing of submissions by the program committee members, as well as the additional reviewers who generously gave their time. The many useful comments provided by the reviewing process must have been very valuable for the authors’ work. Thisconferencewouldneverhavehappenedwithoutthehelpofmanypeople. We greatly appreciate the support of our strong organizing committee chairs and advisory chairs. Among the chairs, special thanks go to Dr. Ichiro Ide and Dr. Takeshi Naemura who smoothly handled publication of the proceedings with Springer. Dr. Kazuya Kodama did a fabulous job as our Web master.

Versatile Video Coding

Versatile Video Coding PDF Author: Humberto Ochoa Dominguez
Publisher: CRC Press
ISBN: 1000795055
Category : Technology & Engineering
Languages : en
Pages : 458

Get Book Here

Book Description
Video is the main driver of bandwidth use, accounting for over 80 per cent of consumer Internet traffic. Video compression is a critical component of many of the available multimedia applications, it is necessary for storage or transmission of digital video over today's band-limited networks. The majority of this video is coded using international standards developed in collaboration with ITU-T Study Group and MPEG. The MPEG family of video coding standards begun on the early 1990s with MPEG-1, developed for video and audio storage on CD-ROMs, with support for progressive video. MPEG-2 was standardized in 1995 for applications of video on DVD, standard and high definition television, with support for interlaced and progressive video. MPEG-4 part 2, also known as MPEG-2 video, was standardized in 1999 for applications of low- bit rate multimedia on mobile platforms and the Internet, with the support of object-based or content based coding by modeling the scene as background and foreground. Since MPEG-1, the main video coding standards were based on the so-called macroblocks. However, research groups continued the work beyond the traditional video coding architectures and found that macroblocks could limit the performance of the compression when using high-resolution video. Therefore, in 2013 the high efficiency video coding (HEVC) also known and H.265, was released, with a structure similar to H.264/AVC but using coding units with more flexible partitions than the traditional macroblocks. HEVC has greater flexibility in prediction modes and transform block sizes, also it has a more sophisticated interpolation and de blocking filters. In 2006 the VC-1 was released. VC-1 is a video codec implemented by Microsoft and the Microsoft Windows Media Video (VMW) 9 and standardized by the Society of Motion Picture and Television Engineers (SMPTE). In 2017 the Joint Video Experts Team (JVET) released a call for proposals for a new video coding standard initially called Beyond the HEVC, Future Video Coding (FVC) or known as Versatile Video Coding (VVC). VVC is being built on top of HEVC for application on Standard Dynamic Range (SDR), High Dynamic Range (HDR) and 360° Video. The VVC is planned to be finalized by 2020. This book presents the new VVC, and updates on the HEVC. The book discusses the advances in lossless coding and covers the topic of screen content coding. Technical topics discussed include: Beyond the High Efficiency Video CodingHigh Efficiency Video Coding encoderScreen contentLossless and visually lossless coding algorithmsFast coding algorithmsVisual quality assessmentOther screen content coding algorithmsOverview of JPEG Series

Image and Video Coding/transcoding

Image and Video Coding/transcoding PDF Author: Xiang Yu
Publisher:
ISBN: 9780494433904
Category :
Languages : en
Pages : 142

Get Book Here

Book Description
Due to the lossy nature of image/video compression and the expensive bandwidth and computation resources in a multimedia system, one of the key design issues for image and video coding/transcoding is to optimize trade-off among distortion, rate, and/or complexity. This thesis studies the application of rate distortion (RD) optimization approaches to image and video coding/transcoding for exploring the best RD performance of a video codec compatible to the newest video coding standard H.264 and for designing computationally efficient down-sampling algorithms with high visual fidelity in the discrete Cosine transform (DCT) domain. RD optimization for video coding in this thesis considers two objectives, i.e., to achieve the best encoding efficiency in terms of minimizing the actual RD cost and to maintain decoding compatibility with the newest video coding standard H.264.

The H.264 Advanced Video Compression Standard

The H.264 Advanced Video Compression Standard PDF Author: Iain E. Richardson
Publisher: John Wiley & Sons
ISBN: 1119965306
Category : Science
Languages : en
Pages : 357

Get Book Here

Book Description
H.264 Advanced Video Coding or MPEG-4 Part 10 is fundamental to a growing range of markets such as high definition broadcasting, internet video sharing, mobile video and digital surveillance. This book reflects the growing importance and implementation of H.264 video technology. Offering a detailed overview of the system, it explains the syntax, tools and features of H.264 and equips readers with practical advice on how to get the most out of the standard. Packed with clear examples and illustrations to explain H.264 technology in an accessible and practical way. Covers basic video coding concepts, video formats and visual quality. Explains how to measure and optimise the performance of H.264 and how to balance bitrate, computation and video quality. Analyses recent work on scalable and multi-view versions of H.264, case studies of H.264 codecs and new technological developments such as the popular High Profile extensions. An invaluable companion for developers, broadcasters, system integrators, academics and students who want to master this burgeoning state-of-the-art technology. "[This book] unravels the mysteries behind the latest H.264 standard and delves deeper into each of the operations in the codec. The reader can implement (simulate, design, evaluate, optimize) the codec with all profiles and levels. The book ends with extensions and directions (such as SVC and MVC) for further research." Professor K. R. Rao, The University of Texas at Arlington, co-inventor of the Discrete Cosine Transform

High Efficiency Video Coding (HEVC)

High Efficiency Video Coding (HEVC) PDF Author: Vivienne Sze
Publisher: Springer
ISBN: 3319068954
Category : Technology & Engineering
Languages : en
Pages : 384

Get Book Here

Book Description
This book provides developers, engineers, researchers and students with detailed knowledge about the High Efficiency Video Coding (HEVC) standard. HEVC is the successor to the widely successful H.264/AVC video compression standard, and it provides around twice as much compression as H.264/AVC for the same level of quality. The applications for HEVC will not only cover the space of the well-known current uses and capabilities of digital video – they will also include the deployment of new services and the delivery of enhanced video quality, such as ultra-high-definition television (UHDTV) and video with higher dynamic range, wider range of representable color, and greater representation precision than what is typically found today. HEVC is the next major generation of video coding design – a flexible, reliable and robust solution that will support the next decade of video applications and ease the burden of video on world-wide network traffic. This book provides a detailed explanation of the various parts of the standard, insight into how it was developed, and in-depth discussion of algorithms and architectures for its implementation.