Author: Albert T. Bharucha-Reid
Publisher:
ISBN:
Category : Stochastic integral equations
Languages : en
Pages : 296
Book Description
Random Integral Equations
Author: Albert T. Bharucha-Reid
Publisher:
ISBN:
Category : Stochastic integral equations
Languages : en
Pages : 296
Book Description
Publisher:
ISBN:
Category : Stochastic integral equations
Languages : en
Pages : 296
Book Description
Random Integral Equations
Author: Bharucha-Reid
Publisher: Academic Press
ISBN: 008095605X
Category : Computers
Languages : en
Pages : 283
Book Description
Random Integral Equations
Publisher: Academic Press
ISBN: 008095605X
Category : Computers
Languages : en
Pages : 283
Book Description
Random Integral Equations
Random Integral Equations with Applications to Life Sciences and Engineering
Author:
Publisher: Academic Press
ISBN: 0080956173
Category : Mathematics
Languages : en
Pages : 289
Book Description
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering
Publisher: Academic Press
ISBN: 0080956173
Category : Mathematics
Languages : en
Pages : 289
Book Description
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering
Integral Equations
Author: B. L. Moiseiwitsch
Publisher: Courier Corporation
ISBN: 048615212X
Category : Mathematics
Languages : en
Pages : 181
Book Description
This text begins with simple examples of a variety of integral equations and the methods of their solution, and progresses to become gradually more abstract and encompass discussions of Hilbert space. 1977 edition.
Publisher: Courier Corporation
ISBN: 048615212X
Category : Mathematics
Languages : en
Pages : 181
Book Description
This text begins with simple examples of a variety of integral equations and the methods of their solution, and progresses to become gradually more abstract and encompass discussions of Hilbert space. 1977 edition.
Random Integral Equations with Applications to Stochastic Systems
Author: C. P. Tsokos
Publisher: Springer
ISBN: 3540369929
Category : Mathematics
Languages : en
Pages : 181
Book Description
The authors have two main objectives in these notes. First, they wish to give a complete presentation of the theory of existence and uniqueness of random solutions of the most general random Volterra and Fredholm equations which have been studied heretofore. Second, to emphasize the application of their theory to stochastic systems which have not been extensively studied before due to mathematical difficulties that arise. These notes will be of value to mathematicians, probabilists, and engineers who are working in the area of systems theory or to those who are interested in the theory of random equations.
Publisher: Springer
ISBN: 3540369929
Category : Mathematics
Languages : en
Pages : 181
Book Description
The authors have two main objectives in these notes. First, they wish to give a complete presentation of the theory of existence and uniqueness of random solutions of the most general random Volterra and Fredholm equations which have been studied heretofore. Second, to emphasize the application of their theory to stochastic systems which have not been extensively studied before due to mathematical difficulties that arise. These notes will be of value to mathematicians, probabilists, and engineers who are working in the area of systems theory or to those who are interested in the theory of random equations.
The Numerical Solution of Integral Equations of the Second Kind
Author: Kendall E. Atkinson
Publisher: Cambridge University Press
ISBN: 0521583918
Category : Mathematics
Languages : en
Pages : 572
Book Description
This book provides an extensive introduction to the numerical solution of a large class of integral equations.
Publisher: Cambridge University Press
ISBN: 0521583918
Category : Mathematics
Languages : en
Pages : 572
Book Description
This book provides an extensive introduction to the numerical solution of a large class of integral equations.
Implicit Fractional Differential and Integral Equations
Author: Saïd Abbas
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110553813
Category : Mathematics
Languages : en
Pages : 362
Book Description
This book deals with the existence and stability of solutions to initial and boundary value problems for functional differential and integral equations and inclusions involving the Riemann-Liouville, Caputo, and Hadamard fractional derivatives and integrals. A wide variety of topics is covered in a mathematically rigorous manner making this work a valuable source of information for graduate students and researchers working with problems in fractional calculus. Contents Preliminary Background Nonlinear Implicit Fractional Differential Equations Impulsive Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Impulsive NIFDE Integrable Solutions for Implicit Fractional Differential Equations Partial Hadamard Fractional Integral Equations and Inclusions Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions Hadamard–Stieltjes Fractional Integral Equations Ulam Stabilities for Random Hadamard Fractional Integral Equations
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110553813
Category : Mathematics
Languages : en
Pages : 362
Book Description
This book deals with the existence and stability of solutions to initial and boundary value problems for functional differential and integral equations and inclusions involving the Riemann-Liouville, Caputo, and Hadamard fractional derivatives and integrals. A wide variety of topics is covered in a mathematically rigorous manner making this work a valuable source of information for graduate students and researchers working with problems in fractional calculus. Contents Preliminary Background Nonlinear Implicit Fractional Differential Equations Impulsive Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Impulsive NIFDE Integrable Solutions for Implicit Fractional Differential Equations Partial Hadamard Fractional Integral Equations and Inclusions Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions Hadamard–Stieltjes Fractional Integral Equations Ulam Stabilities for Random Hadamard Fractional Integral Equations
Integral Equations
Author: Wolfgang Hackbusch
Publisher: Birkhäuser
ISBN: 3034892152
Category : Mathematics
Languages : en
Pages : 377
Book Description
The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.
Publisher: Birkhäuser
ISBN: 3034892152
Category : Mathematics
Languages : en
Pages : 377
Book Description
The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.
Recent Advances in Integral Equations
Author: Francisco Bulnes
Publisher: BoD – Books on Demand
ISBN: 183880658X
Category : Computers
Languages : en
Pages : 102
Book Description
Integral equations are functional equations in which an unknown function appears under an integral sign. This can involve aspects of function theory and their integral transforms when the unknown function appears with a functional non-degenerated kernel under the integral sign. The close relation between differential and integral equations does that in some functional analysis, and function theory problems may be formulated either way. This book establishes the fundamentals of integral equations and considers some deep research aspects on integral equations of first and second kind, operator theory applied to integral equations, methods to solve some nonlinear integral equations, and singular integral equations, among other things. This is the first volume on this theme, hoping that other volumes of this important functional analysis theme and operator theory to formal functional equations will be realized in the future.
Publisher: BoD – Books on Demand
ISBN: 183880658X
Category : Computers
Languages : en
Pages : 102
Book Description
Integral equations are functional equations in which an unknown function appears under an integral sign. This can involve aspects of function theory and their integral transforms when the unknown function appears with a functional non-degenerated kernel under the integral sign. The close relation between differential and integral equations does that in some functional analysis, and function theory problems may be formulated either way. This book establishes the fundamentals of integral equations and considers some deep research aspects on integral equations of first and second kind, operator theory applied to integral equations, methods to solve some nonlinear integral equations, and singular integral equations, among other things. This is the first volume on this theme, hoping that other volumes of this important functional analysis theme and operator theory to formal functional equations will be realized in the future.
Theory and Applications of Some New Classes of Integral Equations
Author: Alexander G. Ramm
Publisher: Springer Science & Business Media
ISBN: 1461381126
Category : Mathematics
Languages : en
Pages : 353
Book Description
This book is intended for &tudents, research engineers, and mathematicians interested in applications or numerical analysis. Pure analysts will also find some new problems to tackle. Most of the material can be understood by a reader with a relatively modest knowledge of differential and inte gral equations and functional analysis. Readers interested in stochastic optimization will find a new theory of prac tical . importance. Readers interested in problems of static and quasi-static electrodynamics, wave scattering by small bodies of arbitrary shape, and corresponding applications in geophysics, optics, and radiophysics will find explicit analytical formulas for the scattering matrix, polarizability tensor, electrical capacitance of bodies of an arbitrary shape; numerical examples showing the practical utility of these formulas; two-sided variational estimates for the pol arizability tensor; and some open problems such as working out a standard program for calculating the capacitance and polarizability of bodies of arbitrary shape and numerical calculation of multiple integrals with weak singularities. Readers interested in nonlinear vibration theory will find a new method for qualitative study of stationary regimes in the general one-loop passive nonlinear network, including stabil ity in the large, convergence, and an iterative process for calculation the stationary regime. No assumptions concerning the smallness of the nonlinearity or the filter property of the linear one-port are made. New results in the theory of nonlinear operator equations form the basis for the study.
Publisher: Springer Science & Business Media
ISBN: 1461381126
Category : Mathematics
Languages : en
Pages : 353
Book Description
This book is intended for &tudents, research engineers, and mathematicians interested in applications or numerical analysis. Pure analysts will also find some new problems to tackle. Most of the material can be understood by a reader with a relatively modest knowledge of differential and inte gral equations and functional analysis. Readers interested in stochastic optimization will find a new theory of prac tical . importance. Readers interested in problems of static and quasi-static electrodynamics, wave scattering by small bodies of arbitrary shape, and corresponding applications in geophysics, optics, and radiophysics will find explicit analytical formulas for the scattering matrix, polarizability tensor, electrical capacitance of bodies of an arbitrary shape; numerical examples showing the practical utility of these formulas; two-sided variational estimates for the pol arizability tensor; and some open problems such as working out a standard program for calculating the capacitance and polarizability of bodies of arbitrary shape and numerical calculation of multiple integrals with weak singularities. Readers interested in nonlinear vibration theory will find a new method for qualitative study of stationary regimes in the general one-loop passive nonlinear network, including stabil ity in the large, convergence, and an iterative process for calculation the stationary regime. No assumptions concerning the smallness of the nonlinearity or the filter property of the linear one-port are made. New results in the theory of nonlinear operator equations form the basis for the study.