Quantum Transport in Metallic Nanostructures

Quantum Transport in Metallic Nanostructures PDF Author: Oleksandr Tsyplyatyev
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Quantum Transport in Metallic Nanostructures

Quantum Transport in Metallic Nanostructures PDF Author: Oleksandr Tsyplyatyev
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Theory of Quantum Transport in Metallic and Hybrid Nanostructures

Theory of Quantum Transport in Metallic and Hybrid Nanostructures PDF Author: Andreas Glatz
Publisher: Springer Science & Business Media
ISBN: 1402047797
Category : Science
Languages : en
Pages : 307

Get Book Here

Book Description
The book reflects scientific developments in the physics of metallic compound based nanodevices presented at the NATO-sponsored Workshop on nanophysics held in Russia in the summer of 2003. The program tackles the most appealing problems. It brings together specialists and provides an opportunity for young researchers from the partner countries to interact with them and get actively involved in the most attractive and promising interdisciplinary area of contemporary condensed matter physics.

Dissipative Quantum Mechanics of Nanostructures

Dissipative Quantum Mechanics of Nanostructures PDF Author: Andrei D. Zaikin
Publisher: CRC Press
ISBN: 1000024202
Category : Science
Languages : en
Pages : 393

Get Book Here

Book Description
Continuing miniaturization of electronic devices, together with the quickly growing number of nanotechnological applications, demands a profound understanding of the underlying physics. Most of the fundamental problems of modern condensed matter physics involve various aspects of quantum transport and fluctuation phenomena at the nanoscale. In nanostructures, electrons are usually confined to a limited volume and interact with each other and lattice ions, simultaneously suffering multiple scattering events on impurities, barriers, surface imperfections, and other defects. Electron interaction with other degrees of freedom generally yields two major consequences, quantum dissipation and quantum decoherence. In other words, electrons can lose their energy and ability for quantum interference even at very low temperatures. These two different, but related, processes are at the heart of all quantum phenomena discussed in this book. This book presents copious details to facilitate the understanding of the basic physics behind a result and the learning to technically reproduce the result without delving into extra literature. The book subtly balances the description of theoretical methods and techniques and the display of the rich landscape of the physical phenomena that can be accessed by these methods. It is useful for a broad readership ranging from master’s and PhD students to postdocs and senior researchers.

Quantum Transport in Nanostructures and Molecules

Quantum Transport in Nanostructures and Molecules PDF Author: Colin John Lambert
Publisher:
ISBN: 9780750336390
Category : Electron transport
Languages : en
Pages : 0

Get Book Here

Book Description
This reference text presents a conceptual framework for understanding room-temperature electron and phonon transport through molecules and other quantum objects. The flow of electricity through molecules is explained at the boundary of physics and chemistry, providing an authoritative introduction to molecular electronics for physicists, and quantum transport for chemists. Professor Lambert provides a pedagogical account of the fundamental concepts needed to understand quantum transport and thermoelectricity in molecular-scale and nanoscale structures. The material provides researchers and advanced students with an understanding of how quantum transport relates to other areas of materials modelling, condensed matter and computational chemistry. After reading the book, the reader will be familiar with the basic concepts of molecular-orbital theory and scattering theory, which underpin current theories of quantum transport.

Tuneable Electron Transport in Metallic Nanostructures

Tuneable Electron Transport in Metallic Nanostructures PDF Author: Subho Dasgupta
Publisher:
ISBN:
Category :
Languages : en
Pages : 125

Get Book Here

Book Description


Theory of Quantum Transport at Nanoscale

Theory of Quantum Transport at Nanoscale PDF Author: Dmitry Ryndyk
Publisher: Springer
ISBN: 3319240889
Category : Science
Languages : en
Pages : 251

Get Book Here

Book Description
This book is an introduction to a rapidly developing field of modern theoretical physics – the theory of quantum transport at nanoscale. The theoretical methods considered in the book are in the basis of our understanding of charge, spin and heat transport in nanostructures and nanostructured materials and are widely used in nanoelectronics, molecular electronics, spin-dependent electronics (spintronics) and bio-electronics. The book is based on lectures for graduate and post-graduate students at the University of Regensburg and the Technische Universität Dresden (TU Dresden). The first part is devoted to the basic concepts of quantum transport: Landauer-Büttiker method and matrix Green function formalism for coherent transport, Tunneling (Transfer) Hamiltonian and master equation methods for tunneling, Coulomb blockade, vibrons and polarons. The results in this part are obtained as possible without sophisticated techniques, such as nonequilibrium Green functions, which are considered in detail in the second part. A general introduction into the nonequilibrium Green function theory is given. The approach based on the equation-of-motion technique, as well as more sophisticated one based on the Dyson-Keldysh diagrammatic technique are presented. The main attention is paid to the theoretical methods able to describe the nonequilibrium (at finite voltage) electron transport through interacting nanosystems, specifically the correlation effects due to electron-electron and electron-vibron interactions.

Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Electronic Quantum Transport in Mesoscopic Semiconductor Structures PDF Author: Thomas Ihn
Publisher: Springer
ISBN: 0387218289
Category : Science
Languages : en
Pages : 270

Get Book Here

Book Description
Opening with a brief historical account of electron transport from Ohm's law through transport in semiconductor nanostructures, this book discusses topics related to electronic quantum transport. The book is written for graduate students and researchers in the field of mesoscopic semiconductors or in semiconductor nanostructures. Highlights include review of the cryogenic scanning probe techniques applied to semiconductor nanostructures.

Transport in Nanostructures

Transport in Nanostructures PDF Author: David K. Ferry
Publisher: Cambridge University Press
ISBN: 1139480839
Category : Science
Languages : en
Pages : 671

Get Book Here

Book Description
The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.

Quantum Transport in Electronic and Optoelectronic Nanostructures

Quantum Transport in Electronic and Optoelectronic Nanostructures PDF Author: Sina Soleimanikahnoj
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The continuous miniaturization of electronic devices has given rise to structures whose dimensions do not exceed a few nanometers. At this size, electron transport can no longer be explained by simple drift and diffusion processes; electrons do not behave as point particles anymore but as propagating quantum-mechanical waves. In this thesis, we employ state-of-the-art quantum mechanical methods such as the non-equilibrium Green's functions and the density matrix method to study electron motion and light-matter interaction in nanostructures. We Will introduce new device functionalities that arise by tailoring two-dimensional materials such as graphene, phosphorene and transition-metal dichalcogenides (TMDs) into lower-dimensional nanostructures. In the first chapter we study electromagnetic field tuning of electronic properties of phosphorene and its nanoribbons. We show that by applying an electric field, phosphorene transitions from an insulator to a semimetal where a new type of quantum hall effect is observed. Later on, we show that near-equilibrium electron transport in metallic phosphorene nanoribbons takes place in the states whose wavefunctions are located near the edges of the ribbon. Electrical manipulation of these edge states provides a platform for the implementation of two different schemes of pseudospin electronics, a form of electronics based upon manipulation of tunable equivalents of the spin-one-half degree of freedom, i.e., the pseudospin. In chapter 2, we will introduce a numerically efficient density-matrix model applicable to midinfrared quantum cascade lasers. This model allows for inclusion of the lasing field and unlike previous models does not rely on phenomenologically introduced parameters. With the inclusion of lasing field a significant increase in the current density is observed, which leads to a better above-threshold agreement between the computed and experimental current density. In chapter 3, we study plasmon-enhanced optical non-linearity in low-dimensional nanostructures. We show that graphene nanomeshes and nanotriangles made of transition-metal dichalcogenides have great potential for applications in nonlinear nanophotonics. In particular, these nanostructures host plasmonic modes which can be easily excited and tuned for strong second- and third-harmonic generation.

Quantum Transport in One-dimensional Nanostructures

Quantum Transport in One-dimensional Nanostructures PDF Author: Joseph Albert Sulpizio
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 171

Get Book Here

Book Description
One-dimensional (1D) electronic nanostructures comprise a class of systems that boast tremendous promise for both technological innovation as well as fundamental scientific discovery. To fully harness their potential, it is crucial to understand transport through 1D systems at the most fundamental, quantum level. In this thesis, we describe our investigations down three avenues of quantum transport in 1D: (1) ballistic transport in quantum wires, (2) quantum capacitance measurements of nanostructures, and (3) tunneling measurements in carbon nanotubes. First, we discuss measurements and modeling of hole transport in ballistic quantum wires fabricated by GaAs/AlGaAs cleaved-edge overgrowth, where we find strong g-factor anisotropy, which we associate with spin-orbit coupling, and evidence for the importance of charge interactions, indicated by the observation of "0.7" structure. Additionally, we present the first experimental observation of a predicted spin-orbit gap in the 1D density of states, where counter-propagating spins constituting a spin current are accompanied by a clear signal in the conductance. Next, we present the development of a highly sensitive integrated capacitance bridge for quantum capacitance measurements to be used as a novel probe of 1D systems. We demonstrate the utility of our bridge by measuring the capacitance of top-gated graphene devices, where we cleanly resolve the density of states, and also present preliminary measurements of carbon nanotube devices, where we ultimately aim to extract their mobility. Finally, we discuss a set of transport measurements in carbon nanotubes designed to probe interactions between fermions in 1D in which top gates are used to introduce tunable tunnel barriers.