Author: Yi Tang
Publisher: World Scientific
ISBN: 9812706658
Category : Business & Economics
Languages : en
Pages : 523
Book Description
This book addresses selected practical applications and recent developments in the areas of quantitative financial modeling in derivatives instruments, some of which are from the authorsOCO own research and practice. While the primary scope of this book is the fixed-income market (with further focus on the interest rate market), many of the methodologies presented also apply to other financial markets, such as the credit, equity, and foreign exchange markets. This book, which assumes that the reader is familiar with the basics of stochastic calculus and derivatives modeling, is written from the point of view of financial engineers or practitioners, and, as such, it puts more emphasis on the practical applications of financial mathematics in the real market than the mathematics itself with precise (and tedious) technical conditions. It attempts to combine economic insights with mathematics and modeling so as to help the reader develop intuitions. In addition, the book addresses the counterparty credit risk modeling, pricing, and arbitraging strategies, which are relatively recent developments and are of increasing importance. It also discusses various trading structuring strategies and touches upon some popular credit/IR/FX hybrid products, such as PRDC, TARN, Snowballs, Snowbears, CCDS, credit extinguishers."
Quantitative Analysis, Derivatives Modeling, and Trading Strategies
Author: Yi Tang
Publisher: World Scientific
ISBN: 9812706658
Category : Business & Economics
Languages : en
Pages : 523
Book Description
This book addresses selected practical applications and recent developments in the areas of quantitative financial modeling in derivatives instruments, some of which are from the authorsOCO own research and practice. While the primary scope of this book is the fixed-income market (with further focus on the interest rate market), many of the methodologies presented also apply to other financial markets, such as the credit, equity, and foreign exchange markets. This book, which assumes that the reader is familiar with the basics of stochastic calculus and derivatives modeling, is written from the point of view of financial engineers or practitioners, and, as such, it puts more emphasis on the practical applications of financial mathematics in the real market than the mathematics itself with precise (and tedious) technical conditions. It attempts to combine economic insights with mathematics and modeling so as to help the reader develop intuitions. In addition, the book addresses the counterparty credit risk modeling, pricing, and arbitraging strategies, which are relatively recent developments and are of increasing importance. It also discusses various trading structuring strategies and touches upon some popular credit/IR/FX hybrid products, such as PRDC, TARN, Snowballs, Snowbears, CCDS, credit extinguishers."
Publisher: World Scientific
ISBN: 9812706658
Category : Business & Economics
Languages : en
Pages : 523
Book Description
This book addresses selected practical applications and recent developments in the areas of quantitative financial modeling in derivatives instruments, some of which are from the authorsOCO own research and practice. While the primary scope of this book is the fixed-income market (with further focus on the interest rate market), many of the methodologies presented also apply to other financial markets, such as the credit, equity, and foreign exchange markets. This book, which assumes that the reader is familiar with the basics of stochastic calculus and derivatives modeling, is written from the point of view of financial engineers or practitioners, and, as such, it puts more emphasis on the practical applications of financial mathematics in the real market than the mathematics itself with precise (and tedious) technical conditions. It attempts to combine economic insights with mathematics and modeling so as to help the reader develop intuitions. In addition, the book addresses the counterparty credit risk modeling, pricing, and arbitraging strategies, which are relatively recent developments and are of increasing importance. It also discusses various trading structuring strategies and touches upon some popular credit/IR/FX hybrid products, such as PRDC, TARN, Snowballs, Snowbears, CCDS, credit extinguishers."
C# for Financial Markets
Author: Daniel J. Duffy
Publisher: John Wiley & Sons
ISBN: 1118502833
Category : Business & Economics
Languages : en
Pages : 827
Book Description
A practice-oriented guide to using C# to design and program pricing and trading models In this step-by-step guide to software development for financial analysts, traders, developers and quants, the authors show both novice and experienced practitioners how to develop robust and accurate pricing models and employ them in real environments. Traders will learn how to design and implement applications for curve and surface modeling, fixed income products, hedging strategies, plain and exotic option modeling, interest rate options, structured bonds, unfunded structured products, and more. A unique mix of modern software technology and quantitative finance, this book is both timely and practical. The approach is thorough and comprehensive and the authors use a combination of C# language features, design patterns, mathematics and finance to produce efficient and maintainable software. Designed for quant developers, traders and MSc/MFE students, each chapter has numerous exercises and the book is accompanied by a dedicated companion website, www.datasimfinancial.com/forum/viewforum.php?f=196&sid=f30022095850dee48c7db5ff62192b34, providing all source code, alongside audio, support and discussion forums for readers to comment on the code and obtain new versions of the software.
Publisher: John Wiley & Sons
ISBN: 1118502833
Category : Business & Economics
Languages : en
Pages : 827
Book Description
A practice-oriented guide to using C# to design and program pricing and trading models In this step-by-step guide to software development for financial analysts, traders, developers and quants, the authors show both novice and experienced practitioners how to develop robust and accurate pricing models and employ them in real environments. Traders will learn how to design and implement applications for curve and surface modeling, fixed income products, hedging strategies, plain and exotic option modeling, interest rate options, structured bonds, unfunded structured products, and more. A unique mix of modern software technology and quantitative finance, this book is both timely and practical. The approach is thorough and comprehensive and the authors use a combination of C# language features, design patterns, mathematics and finance to produce efficient and maintainable software. Designed for quant developers, traders and MSc/MFE students, each chapter has numerous exercises and the book is accompanied by a dedicated companion website, www.datasimfinancial.com/forum/viewforum.php?f=196&sid=f30022095850dee48c7db5ff62192b34, providing all source code, alongside audio, support and discussion forums for readers to comment on the code and obtain new versions of the software.
Journal of Economic Literature
Author:
Publisher:
ISBN:
Category : Economics
Languages : en
Pages : 318
Book Description
Publisher:
ISBN:
Category : Economics
Languages : en
Pages : 318
Book Description
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 868
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 868
Book Description
International Convergence of Capital Measurement and Capital Standards
Author:
Publisher: Lulu.com
ISBN: 9291316695
Category : Bank capital
Languages : en
Pages : 294
Book Description
Publisher: Lulu.com
ISBN: 9291316695
Category : Bank capital
Languages : en
Pages : 294
Book Description
Optimization-Based Models for Measuring and Hedging Risk in Fixed Income Markets
Author: Johan Hagenbjörk
Publisher: Linköping University Electronic Press
ISBN: 917929927X
Category :
Languages : sv
Pages : 156
Book Description
The global fixed income market is an enormous financial market whose value by far exceeds that of the public stock markets. The interbank market consists of interest rate derivatives, whose primary purpose is to manage interest rate risk. The credit market primarily consists of the bond market, which links investors to companies, institutions, and governments with borrowing needs. This dissertation takes an optimization perspective upon modeling both these areas of the fixed-income market. Legislators on the national markets require financial actors to value their financial assets in accordance with market prices. Thus, prices of many assets, which are not publicly traded, must be determined mathematically. The financial quantities needed for pricing are not directly observable but must be measured through solving inverse optimization problems. These measurements are based on the available market prices, which are observed with various degrees of measurement noise. For the interbank market, the relevant financial quantities consist of term structures of interest rates, which are curves displaying the market rates for different maturities. For the bond market, credit risk is an additional factor that can be modeled through default intensity curves and term structures of recovery rates in case of default. By formulating suitable optimization models, the different underlying financial quantities can be measured in accordance with observable market prices, while conditions for economic realism are imposed. Measuring and managing risk is closely connected to the measurement of the underlying financial quantities. Through a data-driven method, we can show that six systematic risk factors can be used to explain almost all variance in the interest rate curves. By modeling the dynamics of these six risk factors, possible outcomes can be simulated in the form of term structure scenarios. For short-term simulation horizons, this results in a representation of the portfolio value distribution that is consistent with the realized outcomes from historically observed term structures. This enables more accurate measurements of interest rate risk, where our proposed method exhibits both lower risk and lower pricing errors compared to traditional models. We propose a method for decomposing changes in portfolio values for an arbitrary portfolio into the risk factors that affect the value of each instrument. By demonstrating the method for the six systematic risk factors identified for the interbank market, we show that almost all changes in portfolio value and portfolio variance can be attributed to these risk factors. Additional risk factors and approximation errors are gathered into two terms, which can be studied to ensure the quality of the performance attribution, and possibly improve it. To eliminate undesired risk within trading books, banks use hedging. Traditional methods do not take transaction costs into account. We, therefore, propose a method for managing the risks in the interbank market through a stochastic optimization model that considers transaction costs. This method is based on a scenario approximation of the optimization problem where the six systematic risk factors are simulated, and the portfolio variance is weighted against the transaction costs. This results in a method that is preferred over the traditional methods for all risk-averse investors. For the credit market, we use data from the bond market in combination with the interbank market to make accurate measurements of the financial quantities. We address the notoriously difficult problem of separating default risk from recovery risk. In addition to the previous identified six systematic risk factors for risk-free interests, we identify four risk factors that explain almost all variance in default intensities, while a single risk factor seems sufficient to model the recovery risk. Overall, this is a higher number of risk factors than is usually found in the literature. Through a simple model, we can measure the variance in bond prices in terms of these systematic risk factors, and through performance attribution, we relate these values to the empirically realized variances from the quoted bond prices. De globala ränte- och kreditmarknaderna är enorma finansiella marknader vars sammanlagda värden vida överstiger de publika aktiemarknadernas. Räntemarknaden består av räntederivat vars främsta användningsområde är hantering av ränterisker. Kreditmarknaden utgörs i första hand av obligationsmarknaden som syftar till att förmedla pengar från investerare till företag, institutioner och stater med upplåningsbehov. Denna avhandling fokuserar på att utifrån ett optimeringsperspektiv modellera både ränte- och obligationsmarknaden. Lagstiftarna på de nationella marknaderna kräver att de finansiella aktörerna värderar sina finansiella tillgångar i enlighet med marknadspriser. Därmed måste priserna på många instrument, som inte handlas publikt, beräknas matematiskt. De finansiella storheter som krävs för denna prissättning är inte direkt observerbara, utan måste mätas genom att lösa inversa optimeringsproblem. Dessa mätningar görs utifrån tillgängliga marknadspriser, som observeras med varierande grad av mätbrus. För räntemarknaden utgörs de relevanta finansiella storheterna av räntekurvor som åskådliggör marknadsräntorna för olika löptider. För obligationsmarknaden utgör kreditrisken en ytterligare faktor som modelleras via fallissemangsintensitetskurvor och kurvor kopplade till förväntat återvunnet kapital vid eventuellt fallissemang. Genom att formulera lämpliga optimeringsmodeller kan de olika underliggande finansiella storheterna mätas i enlighet med observerbara marknadspriser samtidigt som ekonomisk realism eftersträvas. Mätning och hantering av risker är nära kopplat till mätningen av de underliggande finansiella storheterna. Genom en datadriven metod kan vi visa att sex systematiska riskfaktorer kan användas för att förklara nästan all varians i räntekurvorna. Genom att modellera dynamiken i dessa sex riskfaktorer kan tänkbara utfall för räntekurvor simuleras. För kortsiktiga simuleringshorisonter resulterar detta i en representation av fördelningen av portföljvärden som väl överensstämmer med de realiserade utfallen från historiskt observerade räntekurvor. Detta möjliggör noggrannare mätningar av ränterisk där vår föreslagna metod uppvisar såväl lägre risk som mindre prissättningsfel jämfört med traditionella modeller. Vi föreslår en metod för att dekomponera portföljutvecklingen för en godtycklig portfölj till de riskfaktorer som påverkar värdet för respektive instrument. Genom att demonstrera metoden för de sex systematiska riskfaktorerna som identifierats för räntemarknaden visar vi att nästan all portföljutveckling och portföljvarians kan härledas till dessa riskfaktorer. Övriga riskfaktorer och approximationsfel samlas i två termer, vilka kan användas för att säkerställa och eventuellt förbättra kvaliteten i prestationshärledningen. För att eliminera oönskad risk i sina tradingböcker använder banker sig av hedging. Traditionella metoder tar ingen hänsyn till transaktionskostnader. Vi föreslår därför en metod för att hantera riskerna på räntemarknaden genom en stokastisk optimeringsmodell som också tar hänsyn till transaktionskostnader. Denna metod bygger på en scenarioapproximation av optimeringsproblemet där de sex systematiska riskfaktorerna simuleras och portföljvariansen vägs mot transaktionskostnaderna. Detta resulterar i en metod som, för alla riskaverta investerare, är att föredra framför de traditionella metoderna. På kreditmarknaden använder vi data från obligationsmarknaden i kombination räntemarknaden för att göra noggranna mätningar av de finansiella storheterna. Vi angriper det erkänt svåra problemet att separera fallissemangsrisk från återvinningsrisk. Förutom de tidigare sex systematiska riskfaktorerna för riskfri ränta, identifierar vi fyra riskfaktorer som förklarar nästan all varians i fallissemangsintensiteter, medan en enda riskfaktor tycks räcka för att modellera återvinningsrisken. Sammanlagt är detta ett större antal riskfaktorer än vad som brukar användas i litteraturen. Via en enkel modell kan vi mäta variansen i obligationspriser i termer av dessa systematiska riskfaktorer och genom prestationshärledningen relatera dessa värden till de empiriskt realiserade varianserna från kvoterade obligationspriser.
Publisher: Linköping University Electronic Press
ISBN: 917929927X
Category :
Languages : sv
Pages : 156
Book Description
The global fixed income market is an enormous financial market whose value by far exceeds that of the public stock markets. The interbank market consists of interest rate derivatives, whose primary purpose is to manage interest rate risk. The credit market primarily consists of the bond market, which links investors to companies, institutions, and governments with borrowing needs. This dissertation takes an optimization perspective upon modeling both these areas of the fixed-income market. Legislators on the national markets require financial actors to value their financial assets in accordance with market prices. Thus, prices of many assets, which are not publicly traded, must be determined mathematically. The financial quantities needed for pricing are not directly observable but must be measured through solving inverse optimization problems. These measurements are based on the available market prices, which are observed with various degrees of measurement noise. For the interbank market, the relevant financial quantities consist of term structures of interest rates, which are curves displaying the market rates for different maturities. For the bond market, credit risk is an additional factor that can be modeled through default intensity curves and term structures of recovery rates in case of default. By formulating suitable optimization models, the different underlying financial quantities can be measured in accordance with observable market prices, while conditions for economic realism are imposed. Measuring and managing risk is closely connected to the measurement of the underlying financial quantities. Through a data-driven method, we can show that six systematic risk factors can be used to explain almost all variance in the interest rate curves. By modeling the dynamics of these six risk factors, possible outcomes can be simulated in the form of term structure scenarios. For short-term simulation horizons, this results in a representation of the portfolio value distribution that is consistent with the realized outcomes from historically observed term structures. This enables more accurate measurements of interest rate risk, where our proposed method exhibits both lower risk and lower pricing errors compared to traditional models. We propose a method for decomposing changes in portfolio values for an arbitrary portfolio into the risk factors that affect the value of each instrument. By demonstrating the method for the six systematic risk factors identified for the interbank market, we show that almost all changes in portfolio value and portfolio variance can be attributed to these risk factors. Additional risk factors and approximation errors are gathered into two terms, which can be studied to ensure the quality of the performance attribution, and possibly improve it. To eliminate undesired risk within trading books, banks use hedging. Traditional methods do not take transaction costs into account. We, therefore, propose a method for managing the risks in the interbank market through a stochastic optimization model that considers transaction costs. This method is based on a scenario approximation of the optimization problem where the six systematic risk factors are simulated, and the portfolio variance is weighted against the transaction costs. This results in a method that is preferred over the traditional methods for all risk-averse investors. For the credit market, we use data from the bond market in combination with the interbank market to make accurate measurements of the financial quantities. We address the notoriously difficult problem of separating default risk from recovery risk. In addition to the previous identified six systematic risk factors for risk-free interests, we identify four risk factors that explain almost all variance in default intensities, while a single risk factor seems sufficient to model the recovery risk. Overall, this is a higher number of risk factors than is usually found in the literature. Through a simple model, we can measure the variance in bond prices in terms of these systematic risk factors, and through performance attribution, we relate these values to the empirically realized variances from the quoted bond prices. De globala ränte- och kreditmarknaderna är enorma finansiella marknader vars sammanlagda värden vida överstiger de publika aktiemarknadernas. Räntemarknaden består av räntederivat vars främsta användningsområde är hantering av ränterisker. Kreditmarknaden utgörs i första hand av obligationsmarknaden som syftar till att förmedla pengar från investerare till företag, institutioner och stater med upplåningsbehov. Denna avhandling fokuserar på att utifrån ett optimeringsperspektiv modellera både ränte- och obligationsmarknaden. Lagstiftarna på de nationella marknaderna kräver att de finansiella aktörerna värderar sina finansiella tillgångar i enlighet med marknadspriser. Därmed måste priserna på många instrument, som inte handlas publikt, beräknas matematiskt. De finansiella storheter som krävs för denna prissättning är inte direkt observerbara, utan måste mätas genom att lösa inversa optimeringsproblem. Dessa mätningar görs utifrån tillgängliga marknadspriser, som observeras med varierande grad av mätbrus. För räntemarknaden utgörs de relevanta finansiella storheterna av räntekurvor som åskådliggör marknadsräntorna för olika löptider. För obligationsmarknaden utgör kreditrisken en ytterligare faktor som modelleras via fallissemangsintensitetskurvor och kurvor kopplade till förväntat återvunnet kapital vid eventuellt fallissemang. Genom att formulera lämpliga optimeringsmodeller kan de olika underliggande finansiella storheterna mätas i enlighet med observerbara marknadspriser samtidigt som ekonomisk realism eftersträvas. Mätning och hantering av risker är nära kopplat till mätningen av de underliggande finansiella storheterna. Genom en datadriven metod kan vi visa att sex systematiska riskfaktorer kan användas för att förklara nästan all varians i räntekurvorna. Genom att modellera dynamiken i dessa sex riskfaktorer kan tänkbara utfall för räntekurvor simuleras. För kortsiktiga simuleringshorisonter resulterar detta i en representation av fördelningen av portföljvärden som väl överensstämmer med de realiserade utfallen från historiskt observerade räntekurvor. Detta möjliggör noggrannare mätningar av ränterisk där vår föreslagna metod uppvisar såväl lägre risk som mindre prissättningsfel jämfört med traditionella modeller. Vi föreslår en metod för att dekomponera portföljutvecklingen för en godtycklig portfölj till de riskfaktorer som påverkar värdet för respektive instrument. Genom att demonstrera metoden för de sex systematiska riskfaktorerna som identifierats för räntemarknaden visar vi att nästan all portföljutveckling och portföljvarians kan härledas till dessa riskfaktorer. Övriga riskfaktorer och approximationsfel samlas i två termer, vilka kan användas för att säkerställa och eventuellt förbättra kvaliteten i prestationshärledningen. För att eliminera oönskad risk i sina tradingböcker använder banker sig av hedging. Traditionella metoder tar ingen hänsyn till transaktionskostnader. Vi föreslår därför en metod för att hantera riskerna på räntemarknaden genom en stokastisk optimeringsmodell som också tar hänsyn till transaktionskostnader. Denna metod bygger på en scenarioapproximation av optimeringsproblemet där de sex systematiska riskfaktorerna simuleras och portföljvariansen vägs mot transaktionskostnaderna. Detta resulterar i en metod som, för alla riskaverta investerare, är att föredra framför de traditionella metoderna. På kreditmarknaden använder vi data från obligationsmarknaden i kombination räntemarknaden för att göra noggranna mätningar av de finansiella storheterna. Vi angriper det erkänt svåra problemet att separera fallissemangsrisk från återvinningsrisk. Förutom de tidigare sex systematiska riskfaktorerna för riskfri ränta, identifierar vi fyra riskfaktorer som förklarar nästan all varians i fallissemangsintensiteter, medan en enda riskfaktor tycks räcka för att modellera återvinningsrisken. Sammanlagt är detta ett större antal riskfaktorer än vad som brukar användas i litteraturen. Via en enkel modell kan vi mäta variansen i obligationspriser i termer av dessa systematiska riskfaktorer och genom prestationshärledningen relatera dessa värden till de empiriskt realiserade varianserna från kvoterade obligationspriser.
A Primer on Managing Sovereign Debt-Portfolio Risks
Author: Thordur Jonasson
Publisher: International Monetary Fund
ISBN: 1484350545
Category : Business & Economics
Languages : en
Pages : 133
Book Description
This paper provides an overview of sovereign debt portfolio risks and discusses various liability management operations (LMOs) and instruments used by public debt managers to mitigate these risks. Debt management strategies analyzed in the context of helping reach debt portfolio targets and attain desired portfolio structures. Also, the paper outlines how LMOs could be integrated into a debt management strategy and serve as policy tools to reduce potential debt portfolio vulnerabilities. Further, the paper presents operational issues faced by debt managers, including the need to develop a risk management framework, interactions of debt management with fiscal policy, monetary policy, and financial stability, as well as efficient government bond markets.
Publisher: International Monetary Fund
ISBN: 1484350545
Category : Business & Economics
Languages : en
Pages : 133
Book Description
This paper provides an overview of sovereign debt portfolio risks and discusses various liability management operations (LMOs) and instruments used by public debt managers to mitigate these risks. Debt management strategies analyzed in the context of helping reach debt portfolio targets and attain desired portfolio structures. Also, the paper outlines how LMOs could be integrated into a debt management strategy and serve as policy tools to reduce potential debt portfolio vulnerabilities. Further, the paper presents operational issues faced by debt managers, including the need to develop a risk management framework, interactions of debt management with fiscal policy, monetary policy, and financial stability, as well as efficient government bond markets.
Financial Risk Management
Author: José A. Soler Ramos
Publisher: IDB
ISBN: 9781886938717
Category : Business & Economics
Languages : en
Pages : 422
Book Description
"Drawing on practical methods used by successful risk managers in emerging and developed markets throughout the world, the book provides specific guidance on establishing a modern risk management framework and developing efficient approaches to increase the profitability of risk management activities in emerging market settings."--BOOK JACKET.
Publisher: IDB
ISBN: 9781886938717
Category : Business & Economics
Languages : en
Pages : 422
Book Description
"Drawing on practical methods used by successful risk managers in emerging and developed markets throughout the world, the book provides specific guidance on establishing a modern risk management framework and developing efficient approaches to increase the profitability of risk management activities in emerging market settings."--BOOK JACKET.
Counterparty Credit Risk, Collateral and Funding
Author: Damiano Brigo
Publisher: John Wiley & Sons
ISBN: 047066178X
Category : Business & Economics
Languages : en
Pages : 464
Book Description
The book’s content is focused on rigorous and advanced quantitative methods for the pricing and hedging of counterparty credit and funding risk. The new general theory that is required for this methodology is developed from scratch, leading to a consistent and comprehensive framework for counterparty credit and funding risk, inclusive of collateral, netting rules, possible debit valuation adjustments, re-hypothecation and closeout rules. The book however also looks at quite practical problems, linking particular models to particular ‘concrete’ financial situations across asset classes, including interest rates, FX, commodities, equity, credit itself, and the emerging asset class of longevity. The authors also aim to help quantitative analysts, traders, and anyone else needing to frame and price counterparty credit and funding risk, to develop a ‘feel’ for applying sophisticated mathematics and stochastic calculus to solve practical problems. The main models are illustrated from theoretical formulation to final implementation with calibration to market data, always keeping in mind the concrete questions being dealt with. The authors stress that each model is suited to different situations and products, pointing out that there does not exist a single model which is uniformly better than all the others, although the problems originated by counterparty credit and funding risk point in the direction of global valuation. Finally, proposals for restructuring counterparty credit risk, ranging from contingent credit default swaps to margin lending, are considered.
Publisher: John Wiley & Sons
ISBN: 047066178X
Category : Business & Economics
Languages : en
Pages : 464
Book Description
The book’s content is focused on rigorous and advanced quantitative methods for the pricing and hedging of counterparty credit and funding risk. The new general theory that is required for this methodology is developed from scratch, leading to a consistent and comprehensive framework for counterparty credit and funding risk, inclusive of collateral, netting rules, possible debit valuation adjustments, re-hypothecation and closeout rules. The book however also looks at quite practical problems, linking particular models to particular ‘concrete’ financial situations across asset classes, including interest rates, FX, commodities, equity, credit itself, and the emerging asset class of longevity. The authors also aim to help quantitative analysts, traders, and anyone else needing to frame and price counterparty credit and funding risk, to develop a ‘feel’ for applying sophisticated mathematics and stochastic calculus to solve practical problems. The main models are illustrated from theoretical formulation to final implementation with calibration to market data, always keeping in mind the concrete questions being dealt with. The authors stress that each model is suited to different situations and products, pointing out that there does not exist a single model which is uniformly better than all the others, although the problems originated by counterparty credit and funding risk point in the direction of global valuation. Finally, proposals for restructuring counterparty credit risk, ranging from contingent credit default swaps to margin lending, are considered.
Credit Default Swaps
Author: Marti Subrahmanyam
Publisher: Now Publishers
ISBN: 9781601989000
Category : Business & Economics
Languages : en
Pages : 150
Book Description
Credit Default Swaps: A Survey is the most comprehensive review of all major research domains involving credit default swaps (CDS). CDS have been growing in importance in the global financial markets. However, their role has been hotly debated, in industry and academia, particularly since the credit crisis of 2007-2009. The authors review the extant literature on CDS that has accumulated over the past two decades and divide the survey into seven topics after providing a broad overview in the introduction. The second section traces the historical development of CDS markets and provides an introduction to CDS contract definitions and conventions. The third section discusses the pricing of CDS, from the perspective of no-arbitrage principles, structural, and reduced-form credit risk models. It also summarizes the literature on the determinants of CDS spreads, with a focus on the role of fundamental credit risk factors, liquidity and counterparty risk. The fourth section discusses how the development of the CDS market has affected the characteristics of the bond and equity markets, with an emphasis on market efficiency, price discovery, information flow, and liquidity. Attention is also paid to the CDS-bond basis, the wedge between the pricing of the CDS and its reference bond, and the mispricing between the CDS and the equity market. The fifth section examines the effect of CDS trading on firms' credit and bankruptcy risk, and how it affects corporate financial policy, including bond issuance, capital structure, liquidity management, and corporate governance. The sixth section analyzes how CDS impact the economic incentives of financial intermediaries. The seventh section reviews the growing literature on sovereign CDS and highlights the major differences between the sovereign and corporate CDS markets. The eighth section discusses CDS indices, especially the role of synthetic CDS index products backed by residential mortgage-backed securities during the financial crisis. The authors close with our suggestions for promising future research directions on CDS contracts and markets.
Publisher: Now Publishers
ISBN: 9781601989000
Category : Business & Economics
Languages : en
Pages : 150
Book Description
Credit Default Swaps: A Survey is the most comprehensive review of all major research domains involving credit default swaps (CDS). CDS have been growing in importance in the global financial markets. However, their role has been hotly debated, in industry and academia, particularly since the credit crisis of 2007-2009. The authors review the extant literature on CDS that has accumulated over the past two decades and divide the survey into seven topics after providing a broad overview in the introduction. The second section traces the historical development of CDS markets and provides an introduction to CDS contract definitions and conventions. The third section discusses the pricing of CDS, from the perspective of no-arbitrage principles, structural, and reduced-form credit risk models. It also summarizes the literature on the determinants of CDS spreads, with a focus on the role of fundamental credit risk factors, liquidity and counterparty risk. The fourth section discusses how the development of the CDS market has affected the characteristics of the bond and equity markets, with an emphasis on market efficiency, price discovery, information flow, and liquidity. Attention is also paid to the CDS-bond basis, the wedge between the pricing of the CDS and its reference bond, and the mispricing between the CDS and the equity market. The fifth section examines the effect of CDS trading on firms' credit and bankruptcy risk, and how it affects corporate financial policy, including bond issuance, capital structure, liquidity management, and corporate governance. The sixth section analyzes how CDS impact the economic incentives of financial intermediaries. The seventh section reviews the growing literature on sovereign CDS and highlights the major differences between the sovereign and corporate CDS markets. The eighth section discusses CDS indices, especially the role of synthetic CDS index products backed by residential mortgage-backed securities during the financial crisis. The authors close with our suggestions for promising future research directions on CDS contracts and markets.