Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle

Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle PDF Author: Moussa Labbadi
Publisher: Springer Nature
ISBN: 3030810143
Category : Technology & Engineering
Languages : en
Pages : 263

Get Book Here

Book Description
This book studies selected advanced flight control schemes for an uncertain quadrotor unmanned aerial vehicle (UAV) systems in the presence of constant external disturbances, parametric uncertainties, measurement noise, time-varying external disturbances, and random external disturbances. Furthermore, in all the control techniques proposed in this book, it includes the simulation results with comparison to other nonlinear control schemes recently developed for the tracking control of a quadrotor UAV. The main contributions of the present book for quadrotor UAV systems are as follows: (i) the proposed control methods are based on the high-order sliding mode controller (SMC) and hybrid control algorithm with an optimization method. (ii) the finite-time control schemes are developed by using fast terminal SMC (FTSMC), nonsingular FTSMC (NFTSMC), global time-varying SMC, and adaptive laws. (iii) the fractional-order flight control schemes are developed by using the fractional-order calculus theory, super twisting algorithm, NFTSMC, and the SMC. This book covers the research history and importance of quadrotor system subject to system uncertainties, external wind disturbances, and noise measurements, as well as the research status of advanced flight control methods, adaptive flight control methods, and flight control based on fractional-order theory. The book would be interesting to most academic undergraduate, postgraduates, researchers on flight control for drones and applications of advanced controllers in engineering field. This book presents a must-survey for advanced finite-time control for quadrotor system. Some parts of this book have the potential of becoming the courses for the modelling and control of autonomous flying machines. Readers (academic researcher, undergraduate student, postgraduate student, MBA/executive, and education practitioner) interested in nonlinear control methods find this book an investigation. This book can be used as a good reference for the academic research on the control theory, drones, terminal sliding mode control, and related to this or used in Ph.D. study of control theory and their application in field engineering.

Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle

Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle PDF Author: Moussa Labbadi
Publisher: Springer Nature
ISBN: 3030810143
Category : Technology & Engineering
Languages : en
Pages : 263

Get Book Here

Book Description
This book studies selected advanced flight control schemes for an uncertain quadrotor unmanned aerial vehicle (UAV) systems in the presence of constant external disturbances, parametric uncertainties, measurement noise, time-varying external disturbances, and random external disturbances. Furthermore, in all the control techniques proposed in this book, it includes the simulation results with comparison to other nonlinear control schemes recently developed for the tracking control of a quadrotor UAV. The main contributions of the present book for quadrotor UAV systems are as follows: (i) the proposed control methods are based on the high-order sliding mode controller (SMC) and hybrid control algorithm with an optimization method. (ii) the finite-time control schemes are developed by using fast terminal SMC (FTSMC), nonsingular FTSMC (NFTSMC), global time-varying SMC, and adaptive laws. (iii) the fractional-order flight control schemes are developed by using the fractional-order calculus theory, super twisting algorithm, NFTSMC, and the SMC. This book covers the research history and importance of quadrotor system subject to system uncertainties, external wind disturbances, and noise measurements, as well as the research status of advanced flight control methods, adaptive flight control methods, and flight control based on fractional-order theory. The book would be interesting to most academic undergraduate, postgraduates, researchers on flight control for drones and applications of advanced controllers in engineering field. This book presents a must-survey for advanced finite-time control for quadrotor system. Some parts of this book have the potential of becoming the courses for the modelling and control of autonomous flying machines. Readers (academic researcher, undergraduate student, postgraduate student, MBA/executive, and education practitioner) interested in nonlinear control methods find this book an investigation. This book can be used as a good reference for the academic research on the control theory, drones, terminal sliding mode control, and related to this or used in Ph.D. study of control theory and their application in field engineering.

Quadrotor Unmanned Aerial Vehicle (UAV)

Quadrotor Unmanned Aerial Vehicle (UAV) PDF Author: Osama Pervez
Publisher: GRIN Verlag
ISBN: 3656660999
Category : House & Home
Languages : en
Pages : 59

Get Book Here

Book Description
Project Report from the year 2008 in the subject Instructor Plans: Craft / Production / Trade - Electronics Engineering, grade: 90, Sir Syed University Of Engineering & Technology, language: English, abstract: Quad rotor helicopters have become increasingly important in recent years as platforms for both research and commercial unmanned aerial vehicle applications. This progress report explains work on several important aerodynamic effects. These vehicles have 4 identical rotors in 2 pairs spinning in opposite directions, and possess many advantages over standard helicopters in terms of safety and efficiency at small sizes.

Adaptive Hybrid Control of Quadrotor Drones

Adaptive Hybrid Control of Quadrotor Drones PDF Author: Nihal Dalwadi
Publisher: Springer Nature
ISBN: 9811997446
Category : Technology & Engineering
Languages : en
Pages : 188

Get Book Here

Book Description
This book discusses the dynamics of a tail-sitter quadrotor and biplane quadrotor-type hybrid unmanned aerial vehicles (UAVs) and, based on it, various nonlinear controllers design like backstepping control (BSC), ITSMC (Integral Terminal Sliding Mode Control), and hybrid controller (BSC + ITSMC). It discusses single and multiple observer-based control strategies to handle external disturbances like wind gusts and estimate states. It covers the dynamics of slung load with a biplane quadrotor and a control architecture to handle the effect of partial rotor failure with wind gusts acting on it. An anti-swing control to prevent damage to the slung load and a deflecting surface-based total rotor failure compensation strategy to prevent damage to the biplane quadrotor are also discussed in this book. The monograph will be helpful for undergraduate and post-graduate students as well as researchers in their advanced studies.

Design and Control of a Quadrotor Unmanned Aerial Vehicle

Design and Control of a Quadrotor Unmanned Aerial Vehicle PDF Author: Syed Ali Raza
Publisher:
ISBN:
Category : University of Ottawa theses
Languages : en
Pages : 208

Get Book Here

Book Description


Simulation, Modeling, and Programming for Autonomous Robots

Simulation, Modeling, and Programming for Autonomous Robots PDF Author: Itsuki Noda
Publisher: Springer
ISBN: 3642343279
Category : Computers
Languages : en
Pages : 425

Get Book Here

Book Description
This book constitutes the refereed proceedings of the Third International Conference on Simulation, Modeling, and Programming for Autonomous Robots, SIMPAR 2012, held in Tsukuba, Japan, in November 2012. The 33 revised full papers and presented together with 3 invited talks were carefully reviewed and selected from 46 submissions. Ten papers describe design of complex behaviors of autonomous robots, 9 address software layers, 8 papers refer to related modeling and learning. The papers are organized in topical sections on mobile robots, software modeling and architecture and humanoid and biped robots.

Optimal Path Planning and Control of Quadrotor Unmanned Aerial Vehicle for Area Coverage

Optimal Path Planning and Control of Quadrotor Unmanned Aerial Vehicle for Area Coverage PDF Author: Jiankun Fan
Publisher:
ISBN:
Category : Drone aircraft
Languages : en
Pages : 86

Get Book Here

Book Description
An Unmanned Aerial Vehicle (UAV) is an aircraft without a human pilot on board. Its flight is controlled either autonomously by computers onboard the vehicle, or remotely by a pilot on the ground, or by another vehicle. In recent years, UAVs have been used more commonly than prior years. The example includes areo-camera where a high speed camera was attached to a UAV which can be used as an airborne camera to obtain aerial video. It also could be used for detecting events on ground for tasks such as surveillance and monitoring which is a common task during wars. Similarly UAVs can be used for relaying communication signal during scenarios when regular communication infrastructure is destroyed. The objective of this thesis is motivated from such civilian operations such as search and rescue or wildfire detection and monitoring. One scenario is that of search and rescue where UAV's objective is to geo-locate a person in a given area. The task is carried out with the help of a camera whose live feed is provided to search and rescue personnel. For this objective, the UAV needs to carry out scanning of the entire area in the shortest time. The aim of this thesis to develop algorithms to enable a UAV to scan an area in optimal time, a problem referred to as "Coverage Control" in literature. The thesis focuses on a special kind of UAVs called "quadrotor" that is propelled with the help of four rotors. The overall objective of this thesis is achieved via solving two problems. The first problem is to develop a dynamic control model of quadrtor. In this thesis, a proportional-integral-derivative controller (PID) based feedback control system is developed and implemented on MATLAB's Simulink. The PID controller helps track any given trajectory. The second problem is to design a trajectory that will fulfill the mission. The planed trajectory should make sure the quadrotor will scan the whole area without missing any part to make sure that the quadrotor will find the lost person in the area. The generated trajectory should also be optimal. This is achieved via making some assumptions on the form of the trajectory and solving the optimization problem to obtain optimal parameters of the trajectory. The proposed techniques are validated with the help of numerous simulations.

Unmanned Aerial Vehicles

Unmanned Aerial Vehicles PDF Author: Rogelio Lozano
Publisher: John Wiley & Sons
ISBN: 1118599861
Category : Science
Languages : en
Pages : 280

Get Book Here

Book Description
This book presents the basic tools required to obtain the dynamical models for aerial vehicles (in the Newtonian or Lagrangian approach). Several control laws are presented for mini-helicopters, quadrotors, mini-blimps, flapping-wing aerial vehicles, planes, etc. Finally, this book has two chapters devoted to embedded control systems and Kalman filters applied for aerial vehicles control and navigation. This book presents the state of the art in the area of UAVs. The aerodynamical models of different configurations are presented in detail as well as the control strategies which are validated in experimental platforms.

Trajectory Generation for a Quadrotor Unmanned Aerial Vehicle

Trajectory Generation for a Quadrotor Unmanned Aerial Vehicle PDF Author: Douglas Conover
Publisher:
ISBN:
Category :
Languages : en
Pages : 96

Get Book Here

Book Description
The field of multirotor unmanned aerial vehicles (UAVs) has seen substantial progression in the past decade. Trajectory generation and control has been a main focus in this domain, with methods that enable the performance of complex three-dimensional maneuvers through space. Efforts have been made to execute these maneuvers using concepts of nonlinear control and differential flatness. However, a lack of theory for the estimation of higher-order dérivatives of a multirotor UAV has prevented the experimental application of several of these techniques concentrated on trajectory control. This work firstly explores the existing control approach of sequential composition for the execution of quadrotor manoeuvres through narrow windows. This technique involves the combination of several theoretically simple controllers in sequence in order to produce a complex result. Experimental results conducted in the Mobile Robotics and Automated Systems Laboratory (MRASL) at Polytechnique demonstrate the validity of this approach, producing precise and repeatable manoeuvres through narrow windows. However, they also show the limitations of such a method in real world applications, notably its initial inaccuracy and lack of feasibility evaluation. This thesis then focuses on the development of a state-estimation architecture based on linear Kalman filter techniques in order to provide a real-time value of a quadrotor UAV's second and third derivatives (referred to as acceleration and jerk, respectively). Filters of different complexities are developed with the goal of incorporating all available system information into the resulting estimate. A full-state estimator is produced that uses a quadrotor's position and acceleration measurements as well as control inputs in order to be usable for feedback. A jerk-augmented controller based off of optimal control theory is then developed in order to validate this estimator. It is designed in such a way to use the UAV's jerk, acceleration, velocity and position as design parameters and to be unstable without feedback in each of these terms. Tests are conducted in order to examine the performance of both the estimator and controller. Firstly, the quadrotor is commanded to track various reference inputs in 3D space to ensure its stability. The controller tracks these references very closely to simulated responses. The controller is then asked to follow a changing reference in order to evaluate the precision of the developed estimator. Results show that the real-time estimation of the jerk follows offline values adequately. To the best of our knowledge, this is the first application to implement the feedback of a multirotor UAV's jerk in real-world experimentation.

Unmanned Aerial Vehicles: Breakthroughs in Research and Practice

Unmanned Aerial Vehicles: Breakthroughs in Research and Practice PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1522583661
Category : Transportation
Languages : en
Pages : 558

Get Book Here

Book Description
First used in military applications, unmanned aerial vehicles are becoming an integral aspect of modern society and are expanding into the commercial, scientific, recreational, agricultural, and surveillance sectors. With the increasing use of these drones by government officials, business professionals, and civilians, more research is needed to understand their complexity both in design and function. Unmanned Aerial Vehicles: Breakthroughs in Research and Practice is a critical source of academic knowledge on the design, construction, and maintenance of drones, as well as their applications across all aspects of society. Highlighting a range of pertinent topics such as intelligent systems, artificial intelligence, and situation awareness, this publication is an ideal reference source for military consultants, military personnel, business professionals, operation managers, surveillance companies, agriculturalists, policymakers, government officials, law enforcement, IT professionals, academicians, researchers, and graduate-level students.

Nonlinear and Fault-tolerant Control Techniques for a Quadrotor Unmanned Aerial Vehicle

Nonlinear and Fault-tolerant Control Techniques for a Quadrotor Unmanned Aerial Vehicle PDF Author: Tong Li
Publisher:
ISBN:
Category :
Languages : en
Pages : 176

Get Book Here

Book Description
Unmanned Aerial Vehicles (UAVs) have become more and more popular, and how to control them has become crucial. Although there are many different control methods that can be applied to the control of UAVs, nonlinear control techniques are more practical since the nonlinear features of most UAVs. In this thesis, as the first main contribution, three widely used nonlinear control techniques including Feedback Linearization Control (FLC), Sliding Mode Control (SMC), and Backstepping Control (BSC) are discussed, investigated, and designed in details and flight-tested on a unique quadrotor UAV (Qball-X4) test-bed available at the Networked Autonomous Vehicles (NAV) Lab in Concordia University. Each of these three control algorithms has its own features. The advantages and disadvantages are revealed through both simulation and experimental tests. Sliding mode control is well known for its capability of handling uncertainty, and is expected to be a robust controller on Qball-X4 UAV. Feedback linearization control and backstepping control are considered a bit weaker than sliding mode control. A comparison of these three controllers is carried out in both theoretical analysis and experimental results under same fault-free flight conditions. Testing results and comparison show the different features of different control methods, and provide a view on how to choose controller under a specific condition. Besides, safety and reliability of UAVs have been and will always be a critical issue in the aviation industry. Fault-Tolerant Control (FTC) has played an extremely important role towards UAVs' safety and reliability and the safety of group people if an unexpected crash occurred due to faults/damages of UAVs. Therefore, FTC has been a very active and quickly growing research and development field for UAVs and other safety-critical systems. Based on the use of sliding mode control technique, referred to as Fault-Tolerant SMC (FT-SMC) have been investigated, implemented, flight-tested and compared in the Qball-X4 test-bed and also simulation environment in both passive and active framework of FTC in the presence of different actuator faults/damages, as the second main contribution of this thesis work.