Author: Sean Saito
Publisher: Packt Publishing Ltd
ISBN: 1788993225
Category : Computers
Languages : en
Pages : 287
Book Description
Implement state-of-the-art deep reinforcement learning algorithms using Python and its powerful libraries Key FeaturesImplement Q-learning and Markov models with Python and OpenAIExplore the power of TensorFlow to build self-learning modelsEight AI projects to gain confidence in building self-trained applicationsBook Description Reinforcement learning is one of the most exciting and rapidly growing fields in machine learning. This is due to the many novel algorithms developed and incredible results published in recent years. In this book, you will learn about the core concepts of RL including Q-learning, policy gradients, Monte Carlo processes, and several deep reinforcement learning algorithms. As you make your way through the book, you'll work on projects with datasets of various modalities including image, text, and video. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore technologies such as TensorFlow and OpenAI Gym to implement deep learning reinforcement learning algorithms that also predict stock prices, generate natural language, and even build other neural networks. By the end of this book, you will have hands-on experience with eight reinforcement learning projects, each addressing different topics and/or algorithms. We hope these practical exercises will provide you with better intuition and insight about the field of reinforcement learning and how to apply its algorithms to various problems in real life. What you will learnTrain and evaluate neural networks built using TensorFlow for RLUse RL algorithms in Python and TensorFlow to solve CartPole balancingCreate deep reinforcement learning algorithms to play Atari gamesDeploy RL algorithms using OpenAI UniverseDevelop an agent to chat with humans Implement basic actor-critic algorithms for continuous controlApply advanced deep RL algorithms to games such as MinecraftAutogenerate an image classifier using RLWho this book is for Python Reinforcement Learning Projects is for data analysts, data scientists, and machine learning professionals, who have working knowledge of machine learning techniques and are looking to build better performing, automated, and optimized deep learning models. Individuals who want to work on self-learning model projects will also find this book useful.
Python Reinforcement Learning Projects
Author: Sean Saito
Publisher: Packt Publishing Ltd
ISBN: 1788993225
Category : Computers
Languages : en
Pages : 287
Book Description
Implement state-of-the-art deep reinforcement learning algorithms using Python and its powerful libraries Key FeaturesImplement Q-learning and Markov models with Python and OpenAIExplore the power of TensorFlow to build self-learning modelsEight AI projects to gain confidence in building self-trained applicationsBook Description Reinforcement learning is one of the most exciting and rapidly growing fields in machine learning. This is due to the many novel algorithms developed and incredible results published in recent years. In this book, you will learn about the core concepts of RL including Q-learning, policy gradients, Monte Carlo processes, and several deep reinforcement learning algorithms. As you make your way through the book, you'll work on projects with datasets of various modalities including image, text, and video. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore technologies such as TensorFlow and OpenAI Gym to implement deep learning reinforcement learning algorithms that also predict stock prices, generate natural language, and even build other neural networks. By the end of this book, you will have hands-on experience with eight reinforcement learning projects, each addressing different topics and/or algorithms. We hope these practical exercises will provide you with better intuition and insight about the field of reinforcement learning and how to apply its algorithms to various problems in real life. What you will learnTrain and evaluate neural networks built using TensorFlow for RLUse RL algorithms in Python and TensorFlow to solve CartPole balancingCreate deep reinforcement learning algorithms to play Atari gamesDeploy RL algorithms using OpenAI UniverseDevelop an agent to chat with humans Implement basic actor-critic algorithms for continuous controlApply advanced deep RL algorithms to games such as MinecraftAutogenerate an image classifier using RLWho this book is for Python Reinforcement Learning Projects is for data analysts, data scientists, and machine learning professionals, who have working knowledge of machine learning techniques and are looking to build better performing, automated, and optimized deep learning models. Individuals who want to work on self-learning model projects will also find this book useful.
Publisher: Packt Publishing Ltd
ISBN: 1788993225
Category : Computers
Languages : en
Pages : 287
Book Description
Implement state-of-the-art deep reinforcement learning algorithms using Python and its powerful libraries Key FeaturesImplement Q-learning and Markov models with Python and OpenAIExplore the power of TensorFlow to build self-learning modelsEight AI projects to gain confidence in building self-trained applicationsBook Description Reinforcement learning is one of the most exciting and rapidly growing fields in machine learning. This is due to the many novel algorithms developed and incredible results published in recent years. In this book, you will learn about the core concepts of RL including Q-learning, policy gradients, Monte Carlo processes, and several deep reinforcement learning algorithms. As you make your way through the book, you'll work on projects with datasets of various modalities including image, text, and video. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore technologies such as TensorFlow and OpenAI Gym to implement deep learning reinforcement learning algorithms that also predict stock prices, generate natural language, and even build other neural networks. By the end of this book, you will have hands-on experience with eight reinforcement learning projects, each addressing different topics and/or algorithms. We hope these practical exercises will provide you with better intuition and insight about the field of reinforcement learning and how to apply its algorithms to various problems in real life. What you will learnTrain and evaluate neural networks built using TensorFlow for RLUse RL algorithms in Python and TensorFlow to solve CartPole balancingCreate deep reinforcement learning algorithms to play Atari gamesDeploy RL algorithms using OpenAI UniverseDevelop an agent to chat with humans Implement basic actor-critic algorithms for continuous controlApply advanced deep RL algorithms to games such as MinecraftAutogenerate an image classifier using RLWho this book is for Python Reinforcement Learning Projects is for data analysts, data scientists, and machine learning professionals, who have working knowledge of machine learning techniques and are looking to build better performing, automated, and optimized deep learning models. Individuals who want to work on self-learning model projects will also find this book useful.
Python Reinforcement Learning
Author: Sudharsan Ravichandiran
Publisher: Packt Publishing Ltd
ISBN: 1838640142
Category : Computers
Languages : en
Pages : 484
Book Description
Apply modern reinforcement learning and deep reinforcement learning methods using Python and its powerful libraries Key FeaturesYour entry point into the world of artificial intelligence using the power of PythonAn example-rich guide to master various RL and DRL algorithmsExplore the power of modern Python libraries to gain confidence in building self-trained applicationsBook Description Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL. By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems. This Learning Path includes content from the following Packt products: Hands-On Reinforcement Learning with Python by Sudharsan RavichandiranPython Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa ShanmugamaniWhat you will learnTrain an agent to walk using OpenAI Gym and TensorFlowSolve multi-armed-bandit problems using various algorithmsBuild intelligent agents using the DRQN algorithm to play the Doom gameTeach your agent to play Connect4 using AlphaGo ZeroDefeat Atari arcade games using the value iteration methodDiscover how to deal with discrete and continuous action spaces in various environmentsWho this book is for If you’re an ML/DL enthusiast interested in AI and want to explore RL and deep RL from scratch, this Learning Path is for you. Prior knowledge of linear algebra is expected.
Publisher: Packt Publishing Ltd
ISBN: 1838640142
Category : Computers
Languages : en
Pages : 484
Book Description
Apply modern reinforcement learning and deep reinforcement learning methods using Python and its powerful libraries Key FeaturesYour entry point into the world of artificial intelligence using the power of PythonAn example-rich guide to master various RL and DRL algorithmsExplore the power of modern Python libraries to gain confidence in building self-trained applicationsBook Description Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL. By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems. This Learning Path includes content from the following Packt products: Hands-On Reinforcement Learning with Python by Sudharsan RavichandiranPython Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa ShanmugamaniWhat you will learnTrain an agent to walk using OpenAI Gym and TensorFlowSolve multi-armed-bandit problems using various algorithmsBuild intelligent agents using the DRQN algorithm to play the Doom gameTeach your agent to play Connect4 using AlphaGo ZeroDefeat Atari arcade games using the value iteration methodDiscover how to deal with discrete and continuous action spaces in various environmentsWho this book is for If you’re an ML/DL enthusiast interested in AI and want to explore RL and deep RL from scratch, this Learning Path is for you. Prior knowledge of linear algebra is expected.
Reinforcement Learning Algorithms with Python
Author: Andrea Lonza
Publisher: Packt Publishing Ltd
ISBN: 1789139708
Category : Computers
Languages : en
Pages : 356
Book Description
Develop self-learning algorithms and agents using TensorFlow and other Python tools, frameworks, and libraries Key FeaturesLearn, develop, and deploy advanced reinforcement learning algorithms to solve a variety of tasksUnderstand and develop model-free and model-based algorithms for building self-learning agentsWork with advanced Reinforcement Learning concepts and algorithms such as imitation learning and evolution strategiesBook Description Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents. Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS. By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community. What you will learnDevelop an agent to play CartPole using the OpenAI Gym interfaceDiscover the model-based reinforcement learning paradigmSolve the Frozen Lake problem with dynamic programmingExplore Q-learning and SARSA with a view to playing a taxi gameApply Deep Q-Networks (DQNs) to Atari games using GymStudy policy gradient algorithms, including Actor-Critic and REINFORCEUnderstand and apply PPO and TRPO in continuous locomotion environmentsGet to grips with evolution strategies for solving the lunar lander problemWho this book is for If you are an AI researcher, deep learning user, or anyone who wants to learn reinforcement learning from scratch, this book is for you. You’ll also find this reinforcement learning book useful if you want to learn about the advancements in the field. Working knowledge of Python is necessary.
Publisher: Packt Publishing Ltd
ISBN: 1789139708
Category : Computers
Languages : en
Pages : 356
Book Description
Develop self-learning algorithms and agents using TensorFlow and other Python tools, frameworks, and libraries Key FeaturesLearn, develop, and deploy advanced reinforcement learning algorithms to solve a variety of tasksUnderstand and develop model-free and model-based algorithms for building self-learning agentsWork with advanced Reinforcement Learning concepts and algorithms such as imitation learning and evolution strategiesBook Description Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents. Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS. By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community. What you will learnDevelop an agent to play CartPole using the OpenAI Gym interfaceDiscover the model-based reinforcement learning paradigmSolve the Frozen Lake problem with dynamic programmingExplore Q-learning and SARSA with a view to playing a taxi gameApply Deep Q-Networks (DQNs) to Atari games using GymStudy policy gradient algorithms, including Actor-Critic and REINFORCEUnderstand and apply PPO and TRPO in continuous locomotion environmentsGet to grips with evolution strategies for solving the lunar lander problemWho this book is for If you are an AI researcher, deep learning user, or anyone who wants to learn reinforcement learning from scratch, this book is for you. You’ll also find this reinforcement learning book useful if you want to learn about the advancements in the field. Working knowledge of Python is necessary.
Python Machine Learning Projects
Author: Lisa Tagliaferri
Publisher: DigitalOcean
ISBN: 099977302X
Category : Computers
Languages : en
Pages : 152
Book Description
As machine learning is increasingly leveraged to find patterns, conduct analysis, and make decisions — sometimes without final input from humans who may be impacted by these findings — it is crucial to invest in bringing more stakeholders into the fold. This book of Python projects in machine learning tries to do just that: to equip the developers of today and tomorrow with tools they can use to better understand, evaluate, and shape machine learning to help ensure that it is serving us all. This book will set you up with a Python programming environment if you don’t have one already, then provide you with a conceptual understanding of machine learning in the chapter “An Introduction to Machine Learning.” What follows next are three Python machine learning projects. They will help you create a machine learning classifier, build a neural network to recognize handwritten digits, and give you a background in deep reinforcement learning through building a bot for Atari.
Publisher: DigitalOcean
ISBN: 099977302X
Category : Computers
Languages : en
Pages : 152
Book Description
As machine learning is increasingly leveraged to find patterns, conduct analysis, and make decisions — sometimes without final input from humans who may be impacted by these findings — it is crucial to invest in bringing more stakeholders into the fold. This book of Python projects in machine learning tries to do just that: to equip the developers of today and tomorrow with tools they can use to better understand, evaluate, and shape machine learning to help ensure that it is serving us all. This book will set you up with a Python programming environment if you don’t have one already, then provide you with a conceptual understanding of machine learning in the chapter “An Introduction to Machine Learning.” What follows next are three Python machine learning projects. They will help you create a machine learning classifier, build a neural network to recognize handwritten digits, and give you a background in deep reinforcement learning through building a bot for Atari.
Python Deep Learning Projects
Author: Matthew Lamons
Publisher: Packt Publishing Ltd
ISBN: 1789134757
Category : Computers
Languages : en
Pages : 465
Book Description
Insightful projects to master deep learning and neural network architectures using Python and Keras Key FeaturesExplore deep learning across computer vision, natural language processing (NLP), and image processingDiscover best practices for the training of deep neural networks and their deploymentAccess popular deep learning models as well as widely used neural network architecturesBook Description Deep learning has been gradually revolutionizing every field of artificial intelligence, making application development easier. Python Deep Learning Projects imparts all the knowledge needed to implement complex deep learning projects in the field of computational linguistics and computer vision. Each of these projects is unique, helping you progressively master the subject. You’ll learn how to implement a text classifier system using a recurrent neural network (RNN) model and optimize it to understand the shortcomings you might experience while implementing a simple deep learning system. Similarly, you’ll discover how to develop various projects, including word vector representation, open domain question answering, and building chatbots using seq-to-seq models and language modeling. In addition to this, you’ll cover advanced concepts, such as regularization, gradient clipping, gradient normalization, and bidirectional RNNs, through a series of engaging projects. By the end of this book, you will have gained knowledge to develop your own deep learning systems in a straightforward way and in an efficient way What you will learnSet up a deep learning development environment on Amazon Web Services (AWS)Apply GPU-powered instances as well as the deep learning AMIImplement seq-to-seq networks for modeling natural language processing (NLP)Develop an end-to-end speech recognition systemBuild a system for pixel-wise semantic labeling of an imageCreate a system that generates images and their regionsWho this book is for Python Deep Learning Projects is for you if you want to get insights into deep learning, data science, and artificial intelligence. This book is also for those who want to break into deep learning and develop their own AI projects. It is assumed that you have sound knowledge of Python programming
Publisher: Packt Publishing Ltd
ISBN: 1789134757
Category : Computers
Languages : en
Pages : 465
Book Description
Insightful projects to master deep learning and neural network architectures using Python and Keras Key FeaturesExplore deep learning across computer vision, natural language processing (NLP), and image processingDiscover best practices for the training of deep neural networks and their deploymentAccess popular deep learning models as well as widely used neural network architecturesBook Description Deep learning has been gradually revolutionizing every field of artificial intelligence, making application development easier. Python Deep Learning Projects imparts all the knowledge needed to implement complex deep learning projects in the field of computational linguistics and computer vision. Each of these projects is unique, helping you progressively master the subject. You’ll learn how to implement a text classifier system using a recurrent neural network (RNN) model and optimize it to understand the shortcomings you might experience while implementing a simple deep learning system. Similarly, you’ll discover how to develop various projects, including word vector representation, open domain question answering, and building chatbots using seq-to-seq models and language modeling. In addition to this, you’ll cover advanced concepts, such as regularization, gradient clipping, gradient normalization, and bidirectional RNNs, through a series of engaging projects. By the end of this book, you will have gained knowledge to develop your own deep learning systems in a straightforward way and in an efficient way What you will learnSet up a deep learning development environment on Amazon Web Services (AWS)Apply GPU-powered instances as well as the deep learning AMIImplement seq-to-seq networks for modeling natural language processing (NLP)Develop an end-to-end speech recognition systemBuild a system for pixel-wise semantic labeling of an imageCreate a system that generates images and their regionsWho this book is for Python Deep Learning Projects is for you if you want to get insights into deep learning, data science, and artificial intelligence. This book is also for those who want to break into deep learning and develop their own AI projects. It is assumed that you have sound knowledge of Python programming
Hands-On Reinforcement Learning with Python
Author: Sudharsan Ravichandiran
Publisher: Packt Publishing Ltd
ISBN: 178883691X
Category : Computers
Languages : en
Pages : 309
Book Description
A hands-on guide enriched with examples to master deep reinforcement learning algorithms with Python Key Features Your entry point into the world of artificial intelligence using the power of Python An example-rich guide to master various RL and DRL algorithms Explore various state-of-the-art architectures along with math Book Description Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. Hands-On Reinforcement learning with Python will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning. By the end of the book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence. What you will learn Understand the basics of reinforcement learning methods, algorithms, and elements Train an agent to walk using OpenAI Gym and Tensorflow Understand the Markov Decision Process, Bellman’s optimality, and TD learning Solve multi-armed-bandit problems using various algorithms Master deep learning algorithms, such as RNN, LSTM, and CNN with applications Build intelligent agents using the DRQN algorithm to play the Doom game Teach agents to play the Lunar Lander game using DDPG Train an agent to win a car racing game using dueling DQN Who this book is for If you’re a machine learning developer or deep learning enthusiast interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you. Some knowledge of linear algebra, calculus, and the Python programming language will help you understand the concepts covered in this book.
Publisher: Packt Publishing Ltd
ISBN: 178883691X
Category : Computers
Languages : en
Pages : 309
Book Description
A hands-on guide enriched with examples to master deep reinforcement learning algorithms with Python Key Features Your entry point into the world of artificial intelligence using the power of Python An example-rich guide to master various RL and DRL algorithms Explore various state-of-the-art architectures along with math Book Description Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. Hands-On Reinforcement learning with Python will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning. By the end of the book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence. What you will learn Understand the basics of reinforcement learning methods, algorithms, and elements Train an agent to walk using OpenAI Gym and Tensorflow Understand the Markov Decision Process, Bellman’s optimality, and TD learning Solve multi-armed-bandit problems using various algorithms Master deep learning algorithms, such as RNN, LSTM, and CNN with applications Build intelligent agents using the DRQN algorithm to play the Doom game Teach agents to play the Lunar Lander game using DDPG Train an agent to win a car racing game using dueling DQN Who this book is for If you’re a machine learning developer or deep learning enthusiast interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you. Some knowledge of linear algebra, calculus, and the Python programming language will help you understand the concepts covered in this book.
Reinforcement Learning, second edition
Author: Richard S. Sutton
Publisher: MIT Press
ISBN: 0262352702
Category : Computers
Languages : en
Pages : 549
Book Description
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Publisher: MIT Press
ISBN: 0262352702
Category : Computers
Languages : en
Pages : 549
Book Description
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Keras Reinforcement Learning Projects
Author: Giuseppe Ciaburro
Publisher:
ISBN: 9781789342093
Category : Computers
Languages : en
Pages : 288
Book Description
A practical guide to mastering reinforcement learning algorithms using Keras Key Features Build projects across robotics, gaming, and finance fields, putting reinforcement learning (RL) into action Get to grips with Keras and practice on real-world unstructured datasets Uncover advanced deep learning algorithms such as Monte Carlo, Markov Decision, and Q-learning Book Description Reinforcement learning has evolved a lot in the last couple of years and proven to be a successful technique in building smart and intelligent AI networks. Keras Reinforcement Learning Projects installs human-level performance into your applications using algorithms and techniques of reinforcement learning, coupled with Keras, a faster experimental library. The book begins with getting you up and running with the concepts of reinforcement learning using Keras. You'll learn how to simulate a random walk using Markov chains and select the best portfolio using dynamic programming (DP) and Python. You'll also explore projects such as forecasting stock prices using Monte Carlo methods, delivering vehicle routing application using Temporal Distance (TD) learning algorithms, and balancing a Rotating Mechanical System using Markov decision processes. Once you've understood the basics, you'll move on to Modeling of a Segway, running a robot control system using deep reinforcement learning, and building a handwritten digit recognition model in Python using an image dataset. Finally, you'll excel in playing the board game Go with the help of Q-Learning and reinforcement learning algorithms. By the end of this book, you'll not only have developed hands-on training on concepts, algorithms, and techniques of reinforcement learning but also be all set to explore the world of AI. What you will learn Practice the Markov decision process in prediction and betting evaluations Implement Monte Carlo methods to forecast environment behaviors Explore TD learning algorithms to manage warehouse operations Construct a Deep Q-Network using Python and Keras to control robot movements Apply reinforcement concepts to build a handwritten digit recognition model using an image dataset Address a game theory problem using Q-Learning and OpenAI Gym Who this book is for Keras Reinforcement Learning Projects is for you if you are data scientist, machine learning developer, or AI engineer who wants to understand the fundamentals of reinforcement learning by developing practical projects. Sound knowledge of machine learning and basic familiarity with Keras is useful to get the most out of this book
Publisher:
ISBN: 9781789342093
Category : Computers
Languages : en
Pages : 288
Book Description
A practical guide to mastering reinforcement learning algorithms using Keras Key Features Build projects across robotics, gaming, and finance fields, putting reinforcement learning (RL) into action Get to grips with Keras and practice on real-world unstructured datasets Uncover advanced deep learning algorithms such as Monte Carlo, Markov Decision, and Q-learning Book Description Reinforcement learning has evolved a lot in the last couple of years and proven to be a successful technique in building smart and intelligent AI networks. Keras Reinforcement Learning Projects installs human-level performance into your applications using algorithms and techniques of reinforcement learning, coupled with Keras, a faster experimental library. The book begins with getting you up and running with the concepts of reinforcement learning using Keras. You'll learn how to simulate a random walk using Markov chains and select the best portfolio using dynamic programming (DP) and Python. You'll also explore projects such as forecasting stock prices using Monte Carlo methods, delivering vehicle routing application using Temporal Distance (TD) learning algorithms, and balancing a Rotating Mechanical System using Markov decision processes. Once you've understood the basics, you'll move on to Modeling of a Segway, running a robot control system using deep reinforcement learning, and building a handwritten digit recognition model in Python using an image dataset. Finally, you'll excel in playing the board game Go with the help of Q-Learning and reinforcement learning algorithms. By the end of this book, you'll not only have developed hands-on training on concepts, algorithms, and techniques of reinforcement learning but also be all set to explore the world of AI. What you will learn Practice the Markov decision process in prediction and betting evaluations Implement Monte Carlo methods to forecast environment behaviors Explore TD learning algorithms to manage warehouse operations Construct a Deep Q-Network using Python and Keras to control robot movements Apply reinforcement concepts to build a handwritten digit recognition model using an image dataset Address a game theory problem using Q-Learning and OpenAI Gym Who this book is for Keras Reinforcement Learning Projects is for you if you are data scientist, machine learning developer, or AI engineer who wants to understand the fundamentals of reinforcement learning by developing practical projects. Sound knowledge of machine learning and basic familiarity with Keras is useful to get the most out of this book
TensorFlow Deep Learning Projects
Author: Alexey Grigorev
Publisher: Packt Publishing Ltd
ISBN: 1788398386
Category : Computers
Languages : en
Pages : 310
Book Description
Leverage the power of Tensorflow to design deep learning systems for a variety of real-world scenarios Key Features Build efficient deep learning pipelines using the popular Tensorflow framework Train neural networks such as ConvNets, generative models, and LSTMs Includes projects related to Computer Vision, stock prediction, chatbots and more Book Description TensorFlow is one of the most popular frameworks used for machine learning and, more recently, deep learning. It provides a fast and efficient framework for training different kinds of deep learning models, with very high accuracy. This book is your guide to master deep learning with TensorFlow with the help of 10 real-world projects. TensorFlow Deep Learning Projects starts with setting up the right TensorFlow environment for deep learning. Learn to train different types of deep learning models using TensorFlow, including Convolutional Neural Networks, Recurrent Neural Networks, LSTMs, and Generative Adversarial Networks. While doing so, you will build end-to-end deep learning solutions to tackle different real-world problems in image processing, recommendation systems, stock prediction, and building chatbots, to name a few. You will also develop systems that perform machine translation, and use reinforcement learning techniques to play games. By the end of this book, you will have mastered all the concepts of deep learning and their implementation with TensorFlow, and will be able to build and train your own deep learning models with TensorFlow confidently. What you will learn Set up the TensorFlow environment for deep learning Construct your own ConvNets for effective image processing Use LSTMs for image caption generation Forecast stock prediction accurately with an LSTM architecture Learn what semantic matching is by detecting duplicate Quora questions Set up an AWS instance with TensorFlow to train GANs Train and set up a chatbot to understand and interpret human input Build an AI capable of playing a video game by itself –and win it! Who this book is for This book is for data scientists, machine learning developers as well as deep learning practitioners, who want to build interesting deep learning projects that leverage the power of Tensorflow. Some understanding of machine learning and deep learning, and familiarity with the TensorFlow framework is all you need to get started with this book.
Publisher: Packt Publishing Ltd
ISBN: 1788398386
Category : Computers
Languages : en
Pages : 310
Book Description
Leverage the power of Tensorflow to design deep learning systems for a variety of real-world scenarios Key Features Build efficient deep learning pipelines using the popular Tensorflow framework Train neural networks such as ConvNets, generative models, and LSTMs Includes projects related to Computer Vision, stock prediction, chatbots and more Book Description TensorFlow is one of the most popular frameworks used for machine learning and, more recently, deep learning. It provides a fast and efficient framework for training different kinds of deep learning models, with very high accuracy. This book is your guide to master deep learning with TensorFlow with the help of 10 real-world projects. TensorFlow Deep Learning Projects starts with setting up the right TensorFlow environment for deep learning. Learn to train different types of deep learning models using TensorFlow, including Convolutional Neural Networks, Recurrent Neural Networks, LSTMs, and Generative Adversarial Networks. While doing so, you will build end-to-end deep learning solutions to tackle different real-world problems in image processing, recommendation systems, stock prediction, and building chatbots, to name a few. You will also develop systems that perform machine translation, and use reinforcement learning techniques to play games. By the end of this book, you will have mastered all the concepts of deep learning and their implementation with TensorFlow, and will be able to build and train your own deep learning models with TensorFlow confidently. What you will learn Set up the TensorFlow environment for deep learning Construct your own ConvNets for effective image processing Use LSTMs for image caption generation Forecast stock prediction accurately with an LSTM architecture Learn what semantic matching is by detecting duplicate Quora questions Set up an AWS instance with TensorFlow to train GANs Train and set up a chatbot to understand and interpret human input Build an AI capable of playing a video game by itself –and win it! Who this book is for This book is for data scientists, machine learning developers as well as deep learning practitioners, who want to build interesting deep learning projects that leverage the power of Tensorflow. Some understanding of machine learning and deep learning, and familiarity with the TensorFlow framework is all you need to get started with this book.
Mastering Reinforcement Learning with Python
Author: Enes Bilgin
Publisher: Packt Publishing Ltd
ISBN: 1838648496
Category : Computers
Languages : en
Pages : 544
Book Description
Get hands-on experience in creating state-of-the-art reinforcement learning agents using TensorFlow and RLlib to solve complex real-world business and industry problems with the help of expert tips and best practices Key FeaturesUnderstand how large-scale state-of-the-art RL algorithms and approaches workApply RL to solve complex problems in marketing, robotics, supply chain, finance, cybersecurity, and moreExplore tips and best practices from experts that will enable you to overcome real-world RL challengesBook Description Reinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL. Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning. As you advance, you’ll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray’s RLlib package. You’ll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls. By the end of this book, you’ll have mastered how to train and deploy your own RL agents for solving RL problems. What you will learnModel and solve complex sequential decision-making problems using RLDevelop a solid understanding of how state-of-the-art RL methods workUse Python and TensorFlow to code RL algorithms from scratchParallelize and scale up your RL implementations using Ray's RLlib packageGet in-depth knowledge of a wide variety of RL topicsUnderstand the trade-offs between different RL approachesDiscover and address the challenges of implementing RL in the real worldWho this book is for This book is for expert machine learning practitioners and researchers looking to focus on hands-on reinforcement learning with Python by implementing advanced deep reinforcement learning concepts in real-world projects. Reinforcement learning experts who want to advance their knowledge to tackle large-scale and complex sequential decision-making problems will also find this book useful. Working knowledge of Python programming and deep learning along with prior experience in reinforcement learning is required.
Publisher: Packt Publishing Ltd
ISBN: 1838648496
Category : Computers
Languages : en
Pages : 544
Book Description
Get hands-on experience in creating state-of-the-art reinforcement learning agents using TensorFlow and RLlib to solve complex real-world business and industry problems with the help of expert tips and best practices Key FeaturesUnderstand how large-scale state-of-the-art RL algorithms and approaches workApply RL to solve complex problems in marketing, robotics, supply chain, finance, cybersecurity, and moreExplore tips and best practices from experts that will enable you to overcome real-world RL challengesBook Description Reinforcement learning (RL) is a field of artificial intelligence (AI) used for creating self-learning autonomous agents. Building on a strong theoretical foundation, this book takes a practical approach and uses examples inspired by real-world industry problems to teach you about state-of-the-art RL. Starting with bandit problems, Markov decision processes, and dynamic programming, the book provides an in-depth review of the classical RL techniques, such as Monte Carlo methods and temporal-difference learning. After that, you will learn about deep Q-learning, policy gradient algorithms, actor-critic methods, model-based methods, and multi-agent reinforcement learning. Then, you'll be introduced to some of the key approaches behind the most successful RL implementations, such as domain randomization and curiosity-driven learning. As you advance, you’ll explore many novel algorithms with advanced implementations using modern Python libraries such as TensorFlow and Ray’s RLlib package. You’ll also find out how to implement RL in areas such as robotics, supply chain management, marketing, finance, smart cities, and cybersecurity while assessing the trade-offs between different approaches and avoiding common pitfalls. By the end of this book, you’ll have mastered how to train and deploy your own RL agents for solving RL problems. What you will learnModel and solve complex sequential decision-making problems using RLDevelop a solid understanding of how state-of-the-art RL methods workUse Python and TensorFlow to code RL algorithms from scratchParallelize and scale up your RL implementations using Ray's RLlib packageGet in-depth knowledge of a wide variety of RL topicsUnderstand the trade-offs between different RL approachesDiscover and address the challenges of implementing RL in the real worldWho this book is for This book is for expert machine learning practitioners and researchers looking to focus on hands-on reinforcement learning with Python by implementing advanced deep reinforcement learning concepts in real-world projects. Reinforcement learning experts who want to advance their knowledge to tackle large-scale and complex sequential decision-making problems will also find this book useful. Working knowledge of Python programming and deep learning along with prior experience in reinforcement learning is required.