Author: Robert S. Wolf
Publisher: W. H. Freeman
ISBN: 9780716730507
Category : Mathematics
Languages : en
Pages : 4
Book Description
This text is designed to teach students how to read and write proofs in mathematics and to acquaint them with how mathematicians investigate problems and formulate conjecture.
Proof, Logic, and Conjecture
Author: Robert S. Wolf
Publisher: W. H. Freeman
ISBN: 9780716730507
Category : Mathematics
Languages : en
Pages : 4
Book Description
This text is designed to teach students how to read and write proofs in mathematics and to acquaint them with how mathematicians investigate problems and formulate conjecture.
Publisher: W. H. Freeman
ISBN: 9780716730507
Category : Mathematics
Languages : en
Pages : 4
Book Description
This text is designed to teach students how to read and write proofs in mathematics and to acquaint them with how mathematicians investigate problems and formulate conjecture.
Proofs and Refutations
Author: Imre Lakatos
Publisher: Cambridge University Press
ISBN: 9780521290388
Category : Mathematics
Languages : en
Pages : 190
Book Description
Proofs and Refutations is for those interested in the methodology, philosophy and history of mathematics.
Publisher: Cambridge University Press
ISBN: 9780521290388
Category : Mathematics
Languages : en
Pages : 190
Book Description
Proofs and Refutations is for those interested in the methodology, philosophy and history of mathematics.
Conjecture and Proof
Author: Miklos Laczkovich
Publisher: American Mathematical Soc.
ISBN: 1470458322
Category : Mathematics
Languages : en
Pages : 131
Book Description
The Budapest semesters in mathematics were initiated with the aim of offering undergraduate courses that convey the tradition of Hungarian mathematics to English-speaking students. This book is an elaborate version of the course on Conjecture and Proof. It gives miniature introductions to various areas of mathematics by presenting some interesting and important, but easily accessible results and methods. The text contains complete proofs of deep results such as the transcendence of $e$, the Banach-Tarski paradox and the existence of Borel sets of arbitrary (finite) class. One of the purposes is to demonstrate how far one can get from the first principles in just a couple of steps. Prerequisites are kept to a minimum, and any introductory calculus course provides the necessary background for understanding the book. Exercises are included for the benefit of students. However, this book should prove fascinating for any mathematically literate reader.
Publisher: American Mathematical Soc.
ISBN: 1470458322
Category : Mathematics
Languages : en
Pages : 131
Book Description
The Budapest semesters in mathematics were initiated with the aim of offering undergraduate courses that convey the tradition of Hungarian mathematics to English-speaking students. This book is an elaborate version of the course on Conjecture and Proof. It gives miniature introductions to various areas of mathematics by presenting some interesting and important, but easily accessible results and methods. The text contains complete proofs of deep results such as the transcendence of $e$, the Banach-Tarski paradox and the existence of Borel sets of arbitrary (finite) class. One of the purposes is to demonstrate how far one can get from the first principles in just a couple of steps. Prerequisites are kept to a minimum, and any introductory calculus course provides the necessary background for understanding the book. Exercises are included for the benefit of students. However, this book should prove fascinating for any mathematically literate reader.
Proofs and Confirmations
Author: David M. Bressoud
Publisher: Cambridge University Press
ISBN: 9780521666466
Category : Mathematics
Languages : en
Pages : 300
Book Description
This introduction to recent developments in algebraic combinatorics illustrates how research in mathematics actually progresses. The author recounts the dramatic search for and discovery of a proof of a counting formula conjectured in the late 1970s: the number of n x n alternating sign matrices, objects that generalize permutation matrices. While it was apparent that the conjecture must be true, the proof was elusive. As a result, researchers became drawn to this problem and made connections to aspects of the invariant theory of Jacobi, Sylvester, Cayley, MacMahon, Schur, and Young; to partitions and plane partitions; to symmetric functions; to hypergeometric and basic hypergeometric series; and, finally, to the six-vertex model of statistical mechanics. This volume is accessible to anyone with a knowledge of linear algebra, and it includes extensive exercises and Mathematica programs to help facilitate personal exploration. Students will learn what mathematicians actually do in an interesting and new area of mathematics, and even researchers in combinatorics will find something unique within Proofs and Confirmations.
Publisher: Cambridge University Press
ISBN: 9780521666466
Category : Mathematics
Languages : en
Pages : 300
Book Description
This introduction to recent developments in algebraic combinatorics illustrates how research in mathematics actually progresses. The author recounts the dramatic search for and discovery of a proof of a counting formula conjectured in the late 1970s: the number of n x n alternating sign matrices, objects that generalize permutation matrices. While it was apparent that the conjecture must be true, the proof was elusive. As a result, researchers became drawn to this problem and made connections to aspects of the invariant theory of Jacobi, Sylvester, Cayley, MacMahon, Schur, and Young; to partitions and plane partitions; to symmetric functions; to hypergeometric and basic hypergeometric series; and, finally, to the six-vertex model of statistical mechanics. This volume is accessible to anyone with a knowledge of linear algebra, and it includes extensive exercises and Mathematica programs to help facilitate personal exploration. Students will learn what mathematicians actually do in an interesting and new area of mathematics, and even researchers in combinatorics will find something unique within Proofs and Confirmations.
Proofs from THE BOOK
Author: Martin Aigner
Publisher: Springer Science & Business Media
ISBN: 3662223430
Category : Mathematics
Languages : en
Pages : 194
Book Description
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
Publisher: Springer Science & Business Media
ISBN: 3662223430
Category : Mathematics
Languages : en
Pages : 194
Book Description
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
How to Prove It
Author: Daniel J. Velleman
Publisher: Cambridge University Press
ISBN: 0521861241
Category : Mathematics
Languages : en
Pages : 401
Book Description
Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
Publisher: Cambridge University Press
ISBN: 0521861241
Category : Mathematics
Languages : en
Pages : 401
Book Description
Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
Mathematics and Plausible Reasoning [Two Volumes in One]
Author: George Polya
Publisher:
ISBN: 9781614275572
Category : Mathematics
Languages : en
Pages : 498
Book Description
2014 Reprint of 1954 American Edition. Full facsimile of the original edition, not reproduced with Optical Recognition Software. This two volume classic comprises two titles: "Patterns of Plausible Inference" and "Induction and Analogy in Mathematics." This is a guide to the practical art of plausible reasoning, particularly in mathematics, but also in every field of human activity. Using mathematics as the example par excellence, Polya shows how even the most rigorous deductive discipline is heavily dependent on techniques of guessing, inductive reasoning, and reasoning by analogy. In solving a problem, the answer must be guessed at before a proof can be given, and guesses are usually made from a knowledge of facts, experience, and hunches. The truly creative mathematician must be a good guesser first and a good prover afterward; many important theorems have been guessed but no proved until much later. In the same way, solutions to problems can be guessed, and a god guesser is much more likely to find a correct solution. This work might have been called "How to Become a Good Guesser."-From the Dust Jacket.
Publisher:
ISBN: 9781614275572
Category : Mathematics
Languages : en
Pages : 498
Book Description
2014 Reprint of 1954 American Edition. Full facsimile of the original edition, not reproduced with Optical Recognition Software. This two volume classic comprises two titles: "Patterns of Plausible Inference" and "Induction and Analogy in Mathematics." This is a guide to the practical art of plausible reasoning, particularly in mathematics, but also in every field of human activity. Using mathematics as the example par excellence, Polya shows how even the most rigorous deductive discipline is heavily dependent on techniques of guessing, inductive reasoning, and reasoning by analogy. In solving a problem, the answer must be guessed at before a proof can be given, and guesses are usually made from a knowledge of facts, experience, and hunches. The truly creative mathematician must be a good guesser first and a good prover afterward; many important theorems have been guessed but no proved until much later. In the same way, solutions to problems can be guessed, and a god guesser is much more likely to find a correct solution. This work might have been called "How to Become a Good Guesser."-From the Dust Jacket.
Conjecture & Proof
Author: Diane Driscoll Schwartz
Publisher: Brooks/Cole Publishing Company
ISBN: 9780030983382
Category : Mathematics
Languages : en
Pages : 419
Book Description
Publisher: Brooks/Cole Publishing Company
ISBN: 9780030983382
Category : Mathematics
Languages : en
Pages : 419
Book Description
The Science of Conjecture
Author: James Franklin
Publisher: JHU Press
ISBN: 1421418819
Category : Science
Languages : en
Pages : 807
Book Description
How did we make reliable predictions before Pascal and Fermat's discovery of the mathematics of probability in 1654? What methods in law, science, commerce, philosophy, and logic helped us to get at the truth in cases where certainty was not attainable? In The Science of Conjecture, James Franklin examines how judges, witch inquisitors, and juries evaluated evidence; how scientists weighed reasons for and against scientific theories; and how merchants counted shipwrecks to determine insurance rates. The Science of Conjecture provides a history of rational methods of dealing with uncertainty and explores the coming to consciousness of the human understanding of risk.
Publisher: JHU Press
ISBN: 1421418819
Category : Science
Languages : en
Pages : 807
Book Description
How did we make reliable predictions before Pascal and Fermat's discovery of the mathematics of probability in 1654? What methods in law, science, commerce, philosophy, and logic helped us to get at the truth in cases where certainty was not attainable? In The Science of Conjecture, James Franklin examines how judges, witch inquisitors, and juries evaluated evidence; how scientists weighed reasons for and against scientific theories; and how merchants counted shipwrecks to determine insurance rates. The Science of Conjecture provides a history of rational methods of dealing with uncertainty and explores the coming to consciousness of the human understanding of risk.
An Introduction to Mathematical Logic and Type Theory
Author: Peter B. Andrews
Publisher: Springer Science & Business Media
ISBN: 9401599343
Category : Mathematics
Languages : en
Pages : 404
Book Description
In case you are considering to adopt this book for courses with over 50 students, please contact [email protected] for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.
Publisher: Springer Science & Business Media
ISBN: 9401599343
Category : Mathematics
Languages : en
Pages : 404
Book Description
In case you are considering to adopt this book for courses with over 50 students, please contact [email protected] for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.