Author: FOGA
Publisher: Morgan Kaufmann
ISBN: 1483295028
Category : Computers
Languages : en
Pages : 345
Book Description
Foundations of Genetic Algorithms 1995 (FOGA 3)
Foundations of Genetic Algorithms 1995 (FOGA 3)
Author: FOGA
Publisher: Morgan Kaufmann
ISBN: 1483295028
Category : Computers
Languages : en
Pages : 345
Book Description
Foundations of Genetic Algorithms 1995 (FOGA 3)
Publisher: Morgan Kaufmann
ISBN: 1483295028
Category : Computers
Languages : en
Pages : 345
Book Description
Foundations of Genetic Algorithms 1995 (FOGA 3)
Learning Classifier Systems
Author: Pier L. Lanzi
Publisher: Springer
ISBN: 3540450270
Category : Computers
Languages : en
Pages : 344
Book Description
Learning Classifier Systems (LCS) are a machine learning paradigm introduced by John Holland in 1976. They are rule-based systems in which learning is viewed as a process of ongoing adaptation to a partially unknown environment through genetic algorithms and temporal difference learning. This book provides a unique survey of the current state of the art of LCS and highlights some of the most promising research directions. The first part presents various views of leading people on what learning classifier systems are. The second part is devoted to advanced topics of current interest, including alternative representations, methods for evaluating rule utility, and extensions to existing classifier system models. The final part is dedicated to promising applications in areas like data mining, medical data analysis, economic trading agents, aircraft maneuvering, and autonomous robotics. An appendix comprising 467 entries provides a comprehensive LCS bibliography.
Publisher: Springer
ISBN: 3540450270
Category : Computers
Languages : en
Pages : 344
Book Description
Learning Classifier Systems (LCS) are a machine learning paradigm introduced by John Holland in 1976. They are rule-based systems in which learning is viewed as a process of ongoing adaptation to a partially unknown environment through genetic algorithms and temporal difference learning. This book provides a unique survey of the current state of the art of LCS and highlights some of the most promising research directions. The first part presents various views of leading people on what learning classifier systems are. The second part is devoted to advanced topics of current interest, including alternative representations, methods for evaluating rule utility, and extensions to existing classifier system models. The final part is dedicated to promising applications in areas like data mining, medical data analysis, economic trading agents, aircraft maneuvering, and autonomous robotics. An appendix comprising 467 entries provides a comprehensive LCS bibliography.
Knowledge Incorporation in Evolutionary Computation
Author: Yaochu Jin
Publisher: Springer
ISBN: 3540445110
Category : Mathematics
Languages : en
Pages : 543
Book Description
Incorporation of a priori knowledge, such as expert knowledge, meta-heuristics and human preferences, as well as domain knowledge acquired during evolu tionary search, into evolutionary algorithms has received increasing interest in the recent years. It has been shown from various motivations that knowl edge incorporation into evolutionary search is able to significantly improve search efficiency. However, results on knowledge incorporation in evolution ary computation have been scattered in a wide range of research areas and a systematic handling of this important topic in evolutionary computation still lacks. This edited book is a first attempt to put together the state-of-art and re cent advances on knowledge incorporation in evolutionary computation within a unified framework. Existing methods for knowledge incorporation are di vided into the following five categories according to the functionality of the incorporated knowledge in the evolutionary algorithms. 1. Knowledge incorporation in representation, population initialization, - combination and mutation. 2. Knowledge incorporation in selection and reproduction. 3. Knowledge incorporation in fitness evaluations. 4. Knowledge incorporation through life-time learning and human-computer interactions. 5. Incorporation of human preferences in multi-objective evolutionary com putation. The intended readers of this book are graduate students, researchers and practitioners in all fields of science and engineering who are interested in evolutionary computation. The book is divided into six parts. Part I contains one introductory chapter titled "A selected introduction to evolutionary computation" by Yao, which presents a concise but insightful introduction to evolutionary computation.
Publisher: Springer
ISBN: 3540445110
Category : Mathematics
Languages : en
Pages : 543
Book Description
Incorporation of a priori knowledge, such as expert knowledge, meta-heuristics and human preferences, as well as domain knowledge acquired during evolu tionary search, into evolutionary algorithms has received increasing interest in the recent years. It has been shown from various motivations that knowl edge incorporation into evolutionary search is able to significantly improve search efficiency. However, results on knowledge incorporation in evolution ary computation have been scattered in a wide range of research areas and a systematic handling of this important topic in evolutionary computation still lacks. This edited book is a first attempt to put together the state-of-art and re cent advances on knowledge incorporation in evolutionary computation within a unified framework. Existing methods for knowledge incorporation are di vided into the following five categories according to the functionality of the incorporated knowledge in the evolutionary algorithms. 1. Knowledge incorporation in representation, population initialization, - combination and mutation. 2. Knowledge incorporation in selection and reproduction. 3. Knowledge incorporation in fitness evaluations. 4. Knowledge incorporation through life-time learning and human-computer interactions. 5. Incorporation of human preferences in multi-objective evolutionary com putation. The intended readers of this book are graduate students, researchers and practitioners in all fields of science and engineering who are interested in evolutionary computation. The book is divided into six parts. Part I contains one introductory chapter titled "A selected introduction to evolutionary computation" by Yao, which presents a concise but insightful introduction to evolutionary computation.
Multiobjective Problem Solving from Nature
Author: Joshua Knowles
Publisher: Springer Science & Business Media
ISBN: 3540729631
Category : Computers
Languages : en
Pages : 413
Book Description
This text examines how multiobjective evolutionary algorithms and related techniques can be used to solve problems, particularly in the disciplines of science and engineering. Contributions by leading researchers show how the concept of multiobjective optimization can be used to reformulate and resolve problems in areas such as constrained optimization, co-evolution, classification, inverse modeling, and design.
Publisher: Springer Science & Business Media
ISBN: 3540729631
Category : Computers
Languages : en
Pages : 413
Book Description
This text examines how multiobjective evolutionary algorithms and related techniques can be used to solve problems, particularly in the disciplines of science and engineering. Contributions by leading researchers show how the concept of multiobjective optimization can be used to reformulate and resolve problems in areas such as constrained optimization, co-evolution, classification, inverse modeling, and design.
Parameter Setting in Evolutionary Algorithms
Author: F.J. Lobo
Publisher: Springer
ISBN: 3540694323
Category : Technology & Engineering
Languages : en
Pages : 323
Book Description
One of the main difficulties of applying an evolutionary algorithm (or, as a matter of fact, any heuristic method) to a given problem is to decide on an appropriate set of parameter values. Typically these are specified before the algorithm is run and include population size, selection rate, operator probabilities, not to mention the representation and the operators themselves. This book gives the reader a solid perspective on the different approaches that have been proposed to automate control of these parameters as well as understanding their interactions. The book covers a broad area of evolutionary computation, including genetic algorithms, evolution strategies, genetic programming, estimation of distribution algorithms, and also discusses the issues of specific parameters used in parallel implementations, multi-objective evolutionary algorithms, and practical consideration for real-world applications. It is a recommended read for researchers and practitioners of evolutionary computation and heuristic methods.
Publisher: Springer
ISBN: 3540694323
Category : Technology & Engineering
Languages : en
Pages : 323
Book Description
One of the main difficulties of applying an evolutionary algorithm (or, as a matter of fact, any heuristic method) to a given problem is to decide on an appropriate set of parameter values. Typically these are specified before the algorithm is run and include population size, selection rate, operator probabilities, not to mention the representation and the operators themselves. This book gives the reader a solid perspective on the different approaches that have been proposed to automate control of these parameters as well as understanding their interactions. The book covers a broad area of evolutionary computation, including genetic algorithms, evolution strategies, genetic programming, estimation of distribution algorithms, and also discusses the issues of specific parameters used in parallel implementations, multi-objective evolutionary algorithms, and practical consideration for real-world applications. It is a recommended read for researchers and practitioners of evolutionary computation and heuristic methods.
Multiobjective Evolutionary Algorithms and Applications
Author: Kay Chen Tan
Publisher: Springer Science & Business Media
ISBN: 1846281326
Category : Computers
Languages : en
Pages : 295
Book Description
Evolutionary multiobjective optimization is currently gaining a lot of attention, particularly for researchers in the evolutionary computation communities. Covers the authors’ recent research in the area of multiobjective evolutionary algorithms as well as its practical applications.
Publisher: Springer Science & Business Media
ISBN: 1846281326
Category : Computers
Languages : en
Pages : 295
Book Description
Evolutionary multiobjective optimization is currently gaining a lot of attention, particularly for researchers in the evolutionary computation communities. Covers the authors’ recent research in the area of multiobjective evolutionary algorithms as well as its practical applications.
Clever Algorithms
Author: Jason Brownlee
Publisher: Jason Brownlee
ISBN: 1446785068
Category : Computers
Languages : en
Pages : 437
Book Description
This book provides a handbook of algorithmic recipes from the fields of Metaheuristics, Biologically Inspired Computation and Computational Intelligence that have been described in a complete, consistent, and centralized manner. These standardized descriptions were carefully designed to be accessible, usable, and understandable. Most of the algorithms described in this book were originally inspired by biological and natural systems, such as the adaptive capabilities of genetic evolution and the acquired immune system, and the foraging behaviors of birds, bees, ants and bacteria. An encyclopedic algorithm reference, this book is intended for research scientists, engineers, students, and interested amateurs. Each algorithm description provides a working code example in the Ruby Programming Language.
Publisher: Jason Brownlee
ISBN: 1446785068
Category : Computers
Languages : en
Pages : 437
Book Description
This book provides a handbook of algorithmic recipes from the fields of Metaheuristics, Biologically Inspired Computation and Computational Intelligence that have been described in a complete, consistent, and centralized manner. These standardized descriptions were carefully designed to be accessible, usable, and understandable. Most of the algorithms described in this book were originally inspired by biological and natural systems, such as the adaptive capabilities of genetic evolution and the acquired immune system, and the foraging behaviors of birds, bees, ants and bacteria. An encyclopedic algorithm reference, this book is intended for research scientists, engineers, students, and interested amateurs. Each algorithm description provides a working code example in the Ruby Programming Language.
Introduction to Data Mining and its Applications
Author: S. Sumathi
Publisher: Springer
ISBN: 3540343512
Category : Computers
Languages : en
Pages : 836
Book Description
This book explores the concepts of data mining and data warehousing, a promising and flourishing frontier in database systems, and presents a broad, yet in-depth overview of the field of data mining. Data mining is a multidisciplinary field, drawing work from areas including database technology, artificial intelligence, machine learning, neural networks, statistics, pattern recognition, knowledge based systems, knowledge acquisition, information retrieval, high performance computing and data visualization.
Publisher: Springer
ISBN: 3540343512
Category : Computers
Languages : en
Pages : 836
Book Description
This book explores the concepts of data mining and data warehousing, a promising and flourishing frontier in database systems, and presents a broad, yet in-depth overview of the field of data mining. Data mining is a multidisciplinary field, drawing work from areas including database technology, artificial intelligence, machine learning, neural networks, statistics, pattern recognition, knowledge based systems, knowledge acquisition, information retrieval, high performance computing and data visualization.
Advances in Computational Intelligence and Learning
Author: Hans-Jürgen Zimmermann
Publisher: Springer Science & Business Media
ISBN: 9401003246
Category : Mathematics
Languages : en
Pages : 518
Book Description
Advances in Computational Intelligence and Learning: Methods and Applications presents new developments and applications in the area of Computational Intelligence, which essentially describes methods and approaches that mimic biologically intelligent behavior in order to solve problems that have been difficult to solve by classical mathematics. Generally Fuzzy Technology, Artificial Neural Nets and Evolutionary Computing are considered to be such approaches. The Editors have assembled new contributions in the areas of fuzzy sets, neural sets and machine learning, as well as combinations of them (so called hybrid methods) in the first part of the book. The second part of the book is dedicated to applications in the areas that are considered to be most relevant to Computational Intelligence.
Publisher: Springer Science & Business Media
ISBN: 9401003246
Category : Mathematics
Languages : en
Pages : 518
Book Description
Advances in Computational Intelligence and Learning: Methods and Applications presents new developments and applications in the area of Computational Intelligence, which essentially describes methods and approaches that mimic biologically intelligent behavior in order to solve problems that have been difficult to solve by classical mathematics. Generally Fuzzy Technology, Artificial Neural Nets and Evolutionary Computing are considered to be such approaches. The Editors have assembled new contributions in the areas of fuzzy sets, neural sets and machine learning, as well as combinations of them (so called hybrid methods) in the first part of the book. The second part of the book is dedicated to applications in the areas that are considered to be most relevant to Computational Intelligence.
Evolutionary Algorithms
Author: Lawrence D. Davis
Publisher: Springer Science & Business Media
ISBN: 1461215420
Category : Computers
Languages : en
Pages : 303
Book Description
This IMA Volume in Mathematics and its Applications EVOLUTIONARY ALGORITHMS is based on the proceedings of a workshop that was an integral part of the 1996-97 IMA program on "MATHEMATICS IN HIGH-PERFORMANCE COMPUTING." I thank Lawrence David Davis (Tica Associates), Kenneth De Jong (Computer Science, George Mason University), Michael D. Vose (Computer Science, The University of Tennessee), and L. Darrell Whitley (Computer Science, Colorado State University) for their excellent work in organizing the workshop and for editing the proceedings. Further appreciation is ex tended to Donald G. Truhlar (Chemistry and Supercomputing Institute, University of Minnesota) who was also one of the workshop organizers. In addition, I also take this opportunity to thank the National Science Foundation (NSF), Minnesota Supercomputing Institute (MSI), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE The IMA Workshop on Evolutionary Algorithms brought together many of the top researchers working in the area of Evolutionary Com putation for a week of intensive interaction. The field of Evolutionary Computation has developed significantly over the past 30 years and today consists a variety of subfields such as genetic algorithms, evolution strate gies, evolutionary programming, and genetic programming, each with their own algorithmic perspectives and goals.
Publisher: Springer Science & Business Media
ISBN: 1461215420
Category : Computers
Languages : en
Pages : 303
Book Description
This IMA Volume in Mathematics and its Applications EVOLUTIONARY ALGORITHMS is based on the proceedings of a workshop that was an integral part of the 1996-97 IMA program on "MATHEMATICS IN HIGH-PERFORMANCE COMPUTING." I thank Lawrence David Davis (Tica Associates), Kenneth De Jong (Computer Science, George Mason University), Michael D. Vose (Computer Science, The University of Tennessee), and L. Darrell Whitley (Computer Science, Colorado State University) for their excellent work in organizing the workshop and for editing the proceedings. Further appreciation is ex tended to Donald G. Truhlar (Chemistry and Supercomputing Institute, University of Minnesota) who was also one of the workshop organizers. In addition, I also take this opportunity to thank the National Science Foundation (NSF), Minnesota Supercomputing Institute (MSI), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE The IMA Workshop on Evolutionary Algorithms brought together many of the top researchers working in the area of Evolutionary Com putation for a week of intensive interaction. The field of Evolutionary Computation has developed significantly over the past 30 years and today consists a variety of subfields such as genetic algorithms, evolution strate gies, evolutionary programming, and genetic programming, each with their own algorithmic perspectives and goals.