Author: American Mathematical Society. Short Course on Computational Topology
Publisher: American Mathematical Soc.
ISBN: 0821853279
Category : Mathematics
Languages : en
Pages : 250
Book Description
What is the shape of data? How do we describe flows? Can we count by integrating? How do we plan with uncertainty? What is the most compact representation? These questions, while unrelated, become similar when recast into a computational setting. Our input is a set of finite, discrete, noisy samples that describes an abstract space. Our goal is to compute qualitative features of the unknown space. It turns out that topology is sufficiently tolerant to provide us with robust tools. This volume is based on lectures delivered at the 2011 AMS Short Course on Computational Topology, held January 4-5, 2011 in New Orleans, Louisiana. The aim of the volume is to provide a broad introduction to recent techniques from applied and computational topology. Afra Zomorodian focuses on topological data analysis via efficient construction of combinatorial structures and recent theories of persistence. Marian Mrozek analyzes asymptotic behavior of dynamical systems via efficient computation of cubical homology. Justin Curry, Robert Ghrist, and Michael Robinson present Euler Calculus, an integral calculus based on the Euler characteristic, and apply it to sensor and network data aggregation. Michael Erdmann explores the relationship of topology, planning, and probability with the strategy complex. Jeff Erickson surveys algorithms and hardness results for topological optimization problems.
Advances in Applied and Computational Topology
Author: American Mathematical Society. Short Course on Computational Topology
Publisher: American Mathematical Soc.
ISBN: 0821853279
Category : Mathematics
Languages : en
Pages : 250
Book Description
What is the shape of data? How do we describe flows? Can we count by integrating? How do we plan with uncertainty? What is the most compact representation? These questions, while unrelated, become similar when recast into a computational setting. Our input is a set of finite, discrete, noisy samples that describes an abstract space. Our goal is to compute qualitative features of the unknown space. It turns out that topology is sufficiently tolerant to provide us with robust tools. This volume is based on lectures delivered at the 2011 AMS Short Course on Computational Topology, held January 4-5, 2011 in New Orleans, Louisiana. The aim of the volume is to provide a broad introduction to recent techniques from applied and computational topology. Afra Zomorodian focuses on topological data analysis via efficient construction of combinatorial structures and recent theories of persistence. Marian Mrozek analyzes asymptotic behavior of dynamical systems via efficient computation of cubical homology. Justin Curry, Robert Ghrist, and Michael Robinson present Euler Calculus, an integral calculus based on the Euler characteristic, and apply it to sensor and network data aggregation. Michael Erdmann explores the relationship of topology, planning, and probability with the strategy complex. Jeff Erickson surveys algorithms and hardness results for topological optimization problems.
Publisher: American Mathematical Soc.
ISBN: 0821853279
Category : Mathematics
Languages : en
Pages : 250
Book Description
What is the shape of data? How do we describe flows? Can we count by integrating? How do we plan with uncertainty? What is the most compact representation? These questions, while unrelated, become similar when recast into a computational setting. Our input is a set of finite, discrete, noisy samples that describes an abstract space. Our goal is to compute qualitative features of the unknown space. It turns out that topology is sufficiently tolerant to provide us with robust tools. This volume is based on lectures delivered at the 2011 AMS Short Course on Computational Topology, held January 4-5, 2011 in New Orleans, Louisiana. The aim of the volume is to provide a broad introduction to recent techniques from applied and computational topology. Afra Zomorodian focuses on topological data analysis via efficient construction of combinatorial structures and recent theories of persistence. Marian Mrozek analyzes asymptotic behavior of dynamical systems via efficient computation of cubical homology. Justin Curry, Robert Ghrist, and Michael Robinson present Euler Calculus, an integral calculus based on the Euler characteristic, and apply it to sensor and network data aggregation. Michael Erdmann explores the relationship of topology, planning, and probability with the strategy complex. Jeff Erickson surveys algorithms and hardness results for topological optimization problems.
Random Growth Models
Author: Michael Damron
Publisher: American Mathematical Soc.
ISBN: 1470435535
Category : Mathematics
Languages : en
Pages : 274
Book Description
The study of random growth models began in probability theory about 50 years ago, and today this area occupies a central place in the subject. The considerable challenges posed by these models have spurred the development of innovative probability theory and opened up connections with several other parts of mathematics, such as partial differential equations, integrable systems, and combinatorics. These models also have applications to fields such as computer science, biology, and physics. This volume is based on lectures delivered at the 2017 AMS Short Course “Random Growth Models”, held January 2–3, 2017 in Atlanta, GA. The articles in this book give an introduction to the most-studied models; namely, first- and last-passage percolation, the Eden model of cell growth, and particle systems, focusing on the main research questions and leading up to the celebrated Kardar-Parisi-Zhang equation. Topics covered include asymptotic properties of infection times, limiting shape results, fluctuation bounds, and geometrical properties of geodesics, which are optimal paths for growth.
Publisher: American Mathematical Soc.
ISBN: 1470435535
Category : Mathematics
Languages : en
Pages : 274
Book Description
The study of random growth models began in probability theory about 50 years ago, and today this area occupies a central place in the subject. The considerable challenges posed by these models have spurred the development of innovative probability theory and opened up connections with several other parts of mathematics, such as partial differential equations, integrable systems, and combinatorics. These models also have applications to fields such as computer science, biology, and physics. This volume is based on lectures delivered at the 2017 AMS Short Course “Random Growth Models”, held January 2–3, 2017 in Atlanta, GA. The articles in this book give an introduction to the most-studied models; namely, first- and last-passage percolation, the Eden model of cell growth, and particle systems, focusing on the main research questions and leading up to the celebrated Kardar-Parisi-Zhang equation. Topics covered include asymptotic properties of infection times, limiting shape results, fluctuation bounds, and geometrical properties of geodesics, which are optimal paths for growth.
Chaos and Fractals: The Mathematics Behind the Computer Graphics
Author: Robert L. Devaney
Publisher: American Mathematical Soc.
ISBN: 0821801376
Category : Computers
Languages : en
Pages : 176
Book Description
The terms chaos and fractals have received widespread attention in recent years. The alluring computer graphics images associated with these terms have heightened interest among scientists in these ideas. This volume contains the introductory survey lectures delivered in the American Mathematical Society Short Course, Chaos and Fractals: The Mathematics Behind the Computer Graphics, on August 6-7, 1988, given in conjunction with the AMS Centennial Meeting in Providence, Rhode Island. In his overview, Robert L. Devaney introduces such key topics as hyperbolicity, the period doubling route to chaos, chaotic dynamics, symbolic dynamics and the horseshoe, and the appearance of fractals as the chaotic set for a dynamical system. Linda Keen and Bodil Branner discuss the Mandelbrot set and Julia sets associated to the complex quadratic family z -> z2 + c. Kathleen T. Alligood, James A. Yorke, and Philip J. Holmes discuss some of these topics in higher dimensional settings, including the Smale horseshoe and strange attractors. Jenny Harrison and Michael F. Barnsley give an overview of fractal geometry and its applications. -- from dust jacket.
Publisher: American Mathematical Soc.
ISBN: 0821801376
Category : Computers
Languages : en
Pages : 176
Book Description
The terms chaos and fractals have received widespread attention in recent years. The alluring computer graphics images associated with these terms have heightened interest among scientists in these ideas. This volume contains the introductory survey lectures delivered in the American Mathematical Society Short Course, Chaos and Fractals: The Mathematics Behind the Computer Graphics, on August 6-7, 1988, given in conjunction with the AMS Centennial Meeting in Providence, Rhode Island. In his overview, Robert L. Devaney introduces such key topics as hyperbolicity, the period doubling route to chaos, chaotic dynamics, symbolic dynamics and the horseshoe, and the appearance of fractals as the chaotic set for a dynamical system. Linda Keen and Bodil Branner discuss the Mandelbrot set and Julia sets associated to the complex quadratic family z -> z2 + c. Kathleen T. Alligood, James A. Yorke, and Philip J. Holmes discuss some of these topics in higher dimensional settings, including the Smale horseshoe and strange attractors. Jenny Harrison and Michael F. Barnsley give an overview of fractal geometry and its applications. -- from dust jacket.
Different Perspectives on Wavelets
Author: Ingrid Daubechies
Publisher: American Mathematical Soc.
ISBN: 0821855034
Category : Mathematics
Languages : en
Pages : 220
Book Description
The wavelet transform can be seen as a synthesis of ideas that have emerged since the 1960s in mathematics, physics, and electrical engineering. The basic idea is to use a family of 'building blocks' to represent in an efficient way the object at hand, be it a function, an operator, a signal, or an image. The building blocks themselves come in different 'sizes' which can describe different features with different resolutions. The papers in this book attempt to give some theoretical and technical shape to this intuitive picture of wavelets and their uses. The papers collected here were prepared for an AMS Short Course on Wavelets and Applications, held at the Joint Mathematics Meetings in San Antonio in January 1993.Here readers will find general background on wavelets as well as more detailed views of specific techniques and applications. With contributions by some of the top experts in the field, this book provides an excellent introduction to this important and growing area of research.
Publisher: American Mathematical Soc.
ISBN: 0821855034
Category : Mathematics
Languages : en
Pages : 220
Book Description
The wavelet transform can be seen as a synthesis of ideas that have emerged since the 1960s in mathematics, physics, and electrical engineering. The basic idea is to use a family of 'building blocks' to represent in an efficient way the object at hand, be it a function, an operator, a signal, or an image. The building blocks themselves come in different 'sizes' which can describe different features with different resolutions. The papers in this book attempt to give some theoretical and technical shape to this intuitive picture of wavelets and their uses. The papers collected here were prepared for an AMS Short Course on Wavelets and Applications, held at the Joint Mathematics Meetings in San Antonio in January 1993.Here readers will find general background on wavelets as well as more detailed views of specific techniques and applications. With contributions by some of the top experts in the field, this book provides an excellent introduction to this important and growing area of research.
Automorphic Forms, Representations and $L$-Functions
Author: Armand Borel
Publisher: American Mathematical Soc.
ISBN: 0821814370
Category : Mathematics
Languages : en
Pages : 394
Book Description
Part 2 contains sections on Automorphic representations and $L$-functions, Arithmetical algebraic geometry and $L$-functions
Publisher: American Mathematical Soc.
ISBN: 0821814370
Category : Mathematics
Languages : en
Pages : 394
Book Description
Part 2 contains sections on Automorphic representations and $L$-functions, Arithmetical algebraic geometry and $L$-functions
An Excursion Through Discrete Differential Geometry
Author: American Mathematical Society. Short Course, Discrete Differential Geometry
Publisher: American Mathematical Soc.
ISBN: 1470446626
Category : Education
Languages : en
Pages : 154
Book Description
Discrete Differential Geometry (DDG) is an emerging discipline at the boundary between mathematics and computer science. It aims to translate concepts from classical differential geometry into a language that is purely finite and discrete, and can hence be used by algorithms to reason about geometric data. In contrast to standard numerical approximation, the central philosophy of DDG is to faithfully and exactly preserve key invariants of geometric objects at the discrete level. This process of translation from smooth to discrete helps to both illuminate the fundamental meaning behind geometric ideas and provide useful algorithmic guarantees. This volume is based on lectures delivered at the 2018 AMS Short Course ``Discrete Differential Geometry,'' held January 8-9, 2018, in San Diego, California. The papers in this volume illustrate the principles of DDG via several recent topics: discrete nets, discrete differential operators, discrete mappings, discrete conformal geometry, and discrete optimal transport.
Publisher: American Mathematical Soc.
ISBN: 1470446626
Category : Education
Languages : en
Pages : 154
Book Description
Discrete Differential Geometry (DDG) is an emerging discipline at the boundary between mathematics and computer science. It aims to translate concepts from classical differential geometry into a language that is purely finite and discrete, and can hence be used by algorithms to reason about geometric data. In contrast to standard numerical approximation, the central philosophy of DDG is to faithfully and exactly preserve key invariants of geometric objects at the discrete level. This process of translation from smooth to discrete helps to both illuminate the fundamental meaning behind geometric ideas and provide useful algorithmic guarantees. This volume is based on lectures delivered at the 2018 AMS Short Course ``Discrete Differential Geometry,'' held January 8-9, 2018, in San Diego, California. The papers in this volume illustrate the principles of DDG via several recent topics: discrete nets, discrete differential operators, discrete mappings, discrete conformal geometry, and discrete optimal transport.
Cryptology and Computational Number Theory
Author: Carl Pomerance
Publisher: American Mathematical Soc.
ISBN: 9780821801550
Category : Computers
Languages : en
Pages : 188
Book Description
In the past dozen or so years, cryptology and computational number theory have become increasingly intertwined. Because the primary cryptologic application of number theory is the apparent intractability of certain computations, these two fields could part in the future and again go their separate ways. But for now, their union is continuing to bring ferment and rapid change in both subjects. This book contains the proceedings of an AMS Short Course in Cryptology and Computational Number Theory, held in August 1989 during the Joint Mathematics Meetings in Boulder, Colorado. These eight papers by six of the top experts in the field will provide readers with a thorough introduction to some of the principal advances in cryptology and computational number theory over the past fifteen years. In addition to an extensive introductory article, the book contains articles on primality testing, discrete logarithms, integer factoring, knapsack cryptosystems, pseudorandom number generators, the theoretical underpinnings of cryptology, and other number theory-based cryptosystems. Requiring only background in elementary number theory, this book is aimed at nonexperts, including graduate students and advanced undergraduates in mathematics and computer science.
Publisher: American Mathematical Soc.
ISBN: 9780821801550
Category : Computers
Languages : en
Pages : 188
Book Description
In the past dozen or so years, cryptology and computational number theory have become increasingly intertwined. Because the primary cryptologic application of number theory is the apparent intractability of certain computations, these two fields could part in the future and again go their separate ways. But for now, their union is continuing to bring ferment and rapid change in both subjects. This book contains the proceedings of an AMS Short Course in Cryptology and Computational Number Theory, held in August 1989 during the Joint Mathematics Meetings in Boulder, Colorado. These eight papers by six of the top experts in the field will provide readers with a thorough introduction to some of the principal advances in cryptology and computational number theory over the past fifteen years. In addition to an extensive introductory article, the book contains articles on primality testing, discrete logarithms, integer factoring, knapsack cryptosystems, pseudorandom number generators, the theoretical underpinnings of cryptology, and other number theory-based cryptosystems. Requiring only background in elementary number theory, this book is aimed at nonexperts, including graduate students and advanced undergraduates in mathematics and computer science.
Structure of Language and Its Mathematical Aspects
Author:
Publisher: American Mathematical Soc.
ISBN: 0821813129
Category : Language and languages
Languages : en
Pages : 288
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821813129
Category : Language and languages
Languages : en
Pages : 288
Book Description
Analysis on Graphs and Its Applications
Author: Pavel Exner
Publisher: American Mathematical Soc.
ISBN: 0821844717
Category : Mathematics
Languages : en
Pages : 721
Book Description
This book addresses a new interdisciplinary area emerging on the border between various areas of mathematics, physics, chemistry, nanotechnology, and computer science. The focus here is on problems and techniques related to graphs, quantum graphs, and fractals that parallel those from differential equations, differential geometry, or geometric analysis. Also included are such diverse topics as number theory, geometric group theory, waveguide theory, quantum chaos, quantum wiresystems, carbon nano-structures, metal-insulator transition, computer vision, and communication networks.This volume contains a unique collection of expert reviews on the main directions in analysis on graphs (e.g., on discrete geometric analysis, zeta-functions on graphs, recently emerging connections between the geometric group theory and fractals, quantum graphs, quantum chaos on graphs, modeling waveguide systems and modeling quantum graph systems with waveguides, control theory on graphs), as well as research articles.
Publisher: American Mathematical Soc.
ISBN: 0821844717
Category : Mathematics
Languages : en
Pages : 721
Book Description
This book addresses a new interdisciplinary area emerging on the border between various areas of mathematics, physics, chemistry, nanotechnology, and computer science. The focus here is on problems and techniques related to graphs, quantum graphs, and fractals that parallel those from differential equations, differential geometry, or geometric analysis. Also included are such diverse topics as number theory, geometric group theory, waveguide theory, quantum chaos, quantum wiresystems, carbon nano-structures, metal-insulator transition, computer vision, and communication networks.This volume contains a unique collection of expert reviews on the main directions in analysis on graphs (e.g., on discrete geometric analysis, zeta-functions on graphs, recently emerging connections between the geometric group theory and fractals, quantum graphs, quantum chaos on graphs, modeling waveguide systems and modeling quantum graph systems with waveguides, control theory on graphs), as well as research articles.
Matrix Theory and Applications
Author: Charles R. Johnson
Publisher: American Mathematical Soc.
ISBN: 0821801546
Category : Mathematics
Languages : en
Pages : 272
Book Description
This volume contains the lecture notes prepared for the AMS Short Course on Matrix Theory and Applications, held in Phoenix in January, 1989. Matrix theory continues to enjoy a renaissance that has accelerated in the past decade, in part because of stimulation from a variety of applications and considerable interplay with other parts of mathematics. In addition, the great increase in the number and vitality of specialists in the field has dispelled the popular misconception that the subject has been fully researched.
Publisher: American Mathematical Soc.
ISBN: 0821801546
Category : Mathematics
Languages : en
Pages : 272
Book Description
This volume contains the lecture notes prepared for the AMS Short Course on Matrix Theory and Applications, held in Phoenix in January, 1989. Matrix theory continues to enjoy a renaissance that has accelerated in the past decade, in part because of stimulation from a variety of applications and considerable interplay with other parts of mathematics. In addition, the great increase in the number and vitality of specialists in the field has dispelled the popular misconception that the subject has been fully researched.