Probability Theory and Stochastic Processes with Applications (Second Edition)

Probability Theory and Stochastic Processes with Applications (Second Edition) PDF Author: Oliver Knill
Publisher: World Scientific Publishing Company
ISBN: 9789813109490
Category : Mathematics
Languages : en
Pages : 500

Get Book Here

Book Description
This second edition has a unique approach that provides a broad and wide introduction into the fascinating area of probability theory. It starts on a fast track with the treatment of probability theory and stochastic processes by providing short proofs. The last chapter is unique as it features a wide range of applications in other fields like Vlasov dynamics of fluids, statistics of circular data, singular continuous random variables, Diophantine equations, percolation theory, random Schrödinger operators, spectral graph theory, integral geometry, computer vision, and processes with high risk.Many of these areas are under active investigation and this volume is highly suited for ambitious undergraduate students, graduate students and researchers.

Probability Theory and Stochastic Processes with Applications (Second Edition)

Probability Theory and Stochastic Processes with Applications (Second Edition) PDF Author: Oliver Knill
Publisher: World Scientific Publishing Company
ISBN: 9789813109490
Category : Mathematics
Languages : en
Pages : 500

Get Book Here

Book Description
This second edition has a unique approach that provides a broad and wide introduction into the fascinating area of probability theory. It starts on a fast track with the treatment of probability theory and stochastic processes by providing short proofs. The last chapter is unique as it features a wide range of applications in other fields like Vlasov dynamics of fluids, statistics of circular data, singular continuous random variables, Diophantine equations, percolation theory, random Schrödinger operators, spectral graph theory, integral geometry, computer vision, and processes with high risk.Many of these areas are under active investigation and this volume is highly suited for ambitious undergraduate students, graduate students and researchers.

Probabilistic and Stochastic Methods in Analysis, with Applications

Probabilistic and Stochastic Methods in Analysis, with Applications PDF Author: J.S. Byrnes
Publisher: Springer Science & Business Media
ISBN: 9401127913
Category : Mathematics
Languages : en
Pages : 688

Get Book Here

Book Description
Probability has been an important part of mathematics for more than three centuries. Moreover, its importance has grown in recent decades, since the computing power now widely available has allowed probabilistic and stochastic techniques to attack problems such as speech and image processing, geophysical exploration, radar, sonar, etc. -- all of which are covered here. The book contains three exceptionally clear expositions on wavelets, frames and their applications. A further extremely active current research area, well covered here, is the relation between probability and partial differential equations, including probabilistic representations of solutions to elliptic and parabolic PDEs. New approaches, such as the PDE method for large deviation problems, and stochastic optimal control and filtering theory, are beginning to yield their secrets. Another topic dealt with is the application of probabilistic techniques to mathematical analysis. Finally, there are clear explanations of normal numbers and dynamic systems, and the influence of probability on our daily lives.

Fundamentals of Probability and Stochastic Processes with Applications to Communications

Fundamentals of Probability and Stochastic Processes with Applications to Communications PDF Author: Kun Il Park
Publisher: Springer
ISBN: 3319680757
Category : Technology & Engineering
Languages : en
Pages : 277

Get Book Here

Book Description
This book provides engineers with focused treatment of the mathematics needed to understand probability, random variables, and stochastic processes, which are essential mathematical disciplines used in communications engineering. The author explains the basic concepts of these topics as plainly as possible so that people with no in-depth knowledge of these mathematical topics can better appreciate their applications in real problems. Applications examples are drawn from various areas of communications. If a reader is interested in understanding probability and stochastic processes that are specifically important for communications networks and systems, this book serves his/her need.

Introduction To Stochastic Processes

Introduction To Stochastic Processes PDF Author: Mu-fa Chen
Publisher: World Scientific
ISBN: 9814740322
Category : Mathematics
Languages : en
Pages : 245

Get Book Here

Book Description
The objective of this book is to introduce the elements of stochastic processes in a rather concise manner where we present the two most important parts — Markov chains and stochastic analysis. The readers are led directly to the core of the main topics to be treated in the context. Further details and additional materials are left to a section containing abundant exercises for further reading and studying.In the part on Markov chains, the focus is on the ergodicity. By using the minimal nonnegative solution method, we deal with the recurrence and various types of ergodicity. This is done step by step, from finite state spaces to denumerable state spaces, and from discrete time to continuous time. The methods of proofs adopt modern techniques, such as coupling and duality methods. Some very new results are included, such as the estimate of the spectral gap. The structure and proofs in the first part are rather different from other existing textbooks on Markov chains.In the part on stochastic analysis, we cover the martingale theory and Brownian motions, the stochastic integral and stochastic differential equations with emphasis on one dimension, and the multidimensional stochastic integral and stochastic equation based on semimartingales. We introduce three important topics here: the Feynman-Kac formula, random time transform and Girsanov transform. As an essential application of the probability theory in classical mathematics, we also deal with the famous Brunn-Minkowski inequality in convex geometry.This book also features modern probability theory that is used in different fields, such as MCMC, or even deterministic areas: convex geometry and number theory. It provides a new and direct routine for students going through the classical Markov chains to the modern stochastic analysis.

An Introduction to Probability and Stochastic Processes

An Introduction to Probability and Stochastic Processes PDF Author: James L. Melsa
Publisher: Courier Corporation
ISBN: 0486490998
Category : Mathematics
Languages : en
Pages : 420

Get Book Here

Book Description
Detailed coverage of probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.

Applied Probability and Stochastic Processes

Applied Probability and Stochastic Processes PDF Author: Michel K. Ochi
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 528

Get Book Here

Book Description
This introduction to modern concepts of applied stochastic processes is written for a broad range of applications in diverse areas of engineering and the physical sciences (unlike other books, which are written primarily for communications or electrical engineering). Emphasis is on clarifying the basic principles supporting current prediction techniques. The first eight chapters present the probability theory relevant to analysis of stochastic processes. The following nine chapters discuss principles, advanced techniques (including the procedures of spectral analysis and the development of the probability density function) and applications. Also features material found in the recent literature such as higher-order spectral analysis, the joint probability distribution of amplitudes and periods and non-Gaussian random processes. Includes numerous illustrative examples.

Functional Analysis for Probability and Stochastic Processes

Functional Analysis for Probability and Stochastic Processes PDF Author: Adam Bobrowski
Publisher: Cambridge University Press
ISBN: 9780521831666
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
This text presents selected areas of functional analysis that can facilitate an understanding of ideas in probability and stochastic processes. Topics covered include basic Hilbert and Banach spaces, weak topologies and Banach algebras, and the theory ofsemigroups of bounded linear operators.

Applied Probability and Stochastic Processes

Applied Probability and Stochastic Processes PDF Author: Richard Martin Feldman
Publisher: Brooks/Cole
ISBN:
Category : Mathematics
Languages : en
Pages : 328

Get Book Here

Book Description
In this book, Feldman and Valdez-Flores present applied probability and stochastic processes in an elementary but mathematically precise manner, with numerous examples and exercises to illustrate the range of engineering and science applications for the concepts. The book is designed to give the reader an intuitive understanding of probabilistic reasoning, in addition to an understanding of mathematical concepts and principles. Unique features of the book include a self-contained chapter on simulation (Chapter 3) and early introduction of Markov chains.

Probability Theory and Stochastic Processes

Probability Theory and Stochastic Processes PDF Author: Pierre Brémaud
Publisher: Springer Nature
ISBN: 3030401839
Category : Mathematics
Languages : en
Pages : 717

Get Book Here

Book Description
The ultimate objective of this book is to present a panoramic view of the main stochastic processes which have an impact on applications, with complete proofs and exercises. Random processes play a central role in the applied sciences, including operations research, insurance, finance, biology, physics, computer and communications networks, and signal processing. In order to help the reader to reach a level of technical autonomy sufficient to understand the presented models, this book includes a reasonable dose of probability theory. On the other hand, the study of stochastic processes gives an opportunity to apply the main theoretical results of probability theory beyond classroom examples and in a non-trivial manner that makes this discipline look more attractive to the applications-oriented student. One can distinguish three parts of this book. The first four chapters are about probability theory, Chapters 5 to 8 concern random sequences, or discrete-time stochastic processes, and the rest of the book focuses on stochastic processes and point processes. There is sufficient modularity for the instructor or the self-teaching reader to design a course or a study program adapted to her/his specific needs. This book is in a large measure self-contained.

Stochastic Methods in Asset Pricing

Stochastic Methods in Asset Pricing PDF Author: Andrew Lyasoff
Publisher: MIT Press
ISBN: 026203655X
Category : Business & Economics
Languages : en
Pages : 632

Get Book Here

Book Description
A comprehensive overview of the theory of stochastic processes and its connections to asset pricing, accompanied by some concrete applications. This book presents a self-contained, comprehensive, and yet concise and condensed overview of the theory and methods of probability, integration, stochastic processes, optimal control, and their connections to the principles of asset pricing. The book is broader in scope than other introductory-level graduate texts on the subject, requires fewer prerequisites, and covers the relevant material at greater depth, mainly without rigorous technical proofs. The book brings to an introductory level certain concepts and topics that are usually found in advanced research monographs on stochastic processes and asset pricing, and it attempts to establish greater clarity on the connections between these two fields. The book begins with measure-theoretic probability and integration, and then develops the classical tools of stochastic calculus, including stochastic calculus with jumps and Lévy processes. For asset pricing, the book begins with a brief overview of risk preferences and general equilibrium in incomplete finite endowment economies, followed by the classical asset pricing setup in continuous time. The goal is to present a coherent single overview. For example, the text introduces discrete-time martingales as a consequence of market equilibrium considerations and connects them to the stochastic discount factors before offering a general definition. It covers concrete option pricing models (including stochastic volatility, exchange options, and the exercise of American options), Merton's investment–consumption problem, and several other applications. The book includes more than 450 exercises (with detailed hints). Appendixes cover analysis and topology and computer code related to the practical applications discussed in the text.