Author: H.K. Kuiken
Publisher: Springer Science & Business Media
ISBN: 9401006989
Category : Mathematics
Languages : en
Pages : 388
Book Description
Practical Asymptotics is an effective tool for reducing the complexity of large-scale applied-mathematical models arising in engineering, physics, chemistry, and industry, without compromising their accuracy. It exploits the full potential of the dimensionless representation of these models by considering the special nature of the characteristic dimensionless quantities. It can be argued that these dimensionless quantities mostly assume extreme values, particularly for practical parameter settings. Thus, otherwise complicated models can be rendered far less complex and the numerical effort to solve them is greatly reduced. In this book the effectiveness of Practical Asymptotics is demonstrated by fifteen papers devoted to widely differing fields of applied science, such as glass-bottle production, semiconductors, surface-tension-driven flows, microwaving joining, heat generation in foodstuff production, chemical-clock reactions, low-Mach-number flows, to name a few. A strong plea is made for making asymptotics teaching an integral part of any numerics curriculum. Not only will asymptotics reduce the computational effort, it also provides a fuller understanding of the underlying problems.
Practical Asymptotics
Author: H.K. Kuiken
Publisher: Springer Science & Business Media
ISBN: 9401006989
Category : Mathematics
Languages : en
Pages : 388
Book Description
Practical Asymptotics is an effective tool for reducing the complexity of large-scale applied-mathematical models arising in engineering, physics, chemistry, and industry, without compromising their accuracy. It exploits the full potential of the dimensionless representation of these models by considering the special nature of the characteristic dimensionless quantities. It can be argued that these dimensionless quantities mostly assume extreme values, particularly for practical parameter settings. Thus, otherwise complicated models can be rendered far less complex and the numerical effort to solve them is greatly reduced. In this book the effectiveness of Practical Asymptotics is demonstrated by fifteen papers devoted to widely differing fields of applied science, such as glass-bottle production, semiconductors, surface-tension-driven flows, microwaving joining, heat generation in foodstuff production, chemical-clock reactions, low-Mach-number flows, to name a few. A strong plea is made for making asymptotics teaching an integral part of any numerics curriculum. Not only will asymptotics reduce the computational effort, it also provides a fuller understanding of the underlying problems.
Publisher: Springer Science & Business Media
ISBN: 9401006989
Category : Mathematics
Languages : en
Pages : 388
Book Description
Practical Asymptotics is an effective tool for reducing the complexity of large-scale applied-mathematical models arising in engineering, physics, chemistry, and industry, without compromising their accuracy. It exploits the full potential of the dimensionless representation of these models by considering the special nature of the characteristic dimensionless quantities. It can be argued that these dimensionless quantities mostly assume extreme values, particularly for practical parameter settings. Thus, otherwise complicated models can be rendered far less complex and the numerical effort to solve them is greatly reduced. In this book the effectiveness of Practical Asymptotics is demonstrated by fifteen papers devoted to widely differing fields of applied science, such as glass-bottle production, semiconductors, surface-tension-driven flows, microwaving joining, heat generation in foodstuff production, chemical-clock reactions, low-Mach-number flows, to name a few. A strong plea is made for making asymptotics teaching an integral part of any numerics curriculum. Not only will asymptotics reduce the computational effort, it also provides a fuller understanding of the underlying problems.
Asymptotic Methods in Analysis
Author: N. G. de Bruijn
Publisher: Courier Corporation
ISBN: 0486150798
Category : Mathematics
Languages : en
Pages : 225
Book Description
This pioneering study/textbook in a crucial area of pure and applied mathematics features worked examples instead of the formulation of general theorems. Extensive coverage of saddle-point method, iteration, and more. 1958 edition.
Publisher: Courier Corporation
ISBN: 0486150798
Category : Mathematics
Languages : en
Pages : 225
Book Description
This pioneering study/textbook in a crucial area of pure and applied mathematics features worked examples instead of the formulation of general theorems. Extensive coverage of saddle-point method, iteration, and more. 1958 edition.
Practical Applications of Asymptotic Techniques in Electromagnetics
Author: Francisco Sáez de Adana
Publisher: Artech House
ISBN: 1608070646
Category : Mathematics
Languages : en
Pages : 231
Book Description
"Antenna, wireless communication and other electrical engineers use asymptotic techniques for solving electromagnetic problems when the electrical size of a given scenario is large in comparison to the wavelength. This practical book offers in-depth coverage of this area, showing how to apply these techniques to the analysis of complex electromagnetic problems in order to obtain results with an exceptionally high degree of accuracy. Focusing on two highly-effective methods - the uniform theory of diffraction (UTD) and physical optics (PO), this book is unique in that it emphasizes how to solve real-world problems, rather than simply explaining theory like other books on the market. This first-of-its-kind resource show professionals how to apply this knowledge to a wide range of projects in the field, including antenna design, mobile communications, and RCS (radar cross section) computation. This authoritative book is supported with more than 100 illustrations and over 250 equations."
Publisher: Artech House
ISBN: 1608070646
Category : Mathematics
Languages : en
Pages : 231
Book Description
"Antenna, wireless communication and other electrical engineers use asymptotic techniques for solving electromagnetic problems when the electrical size of a given scenario is large in comparison to the wavelength. This practical book offers in-depth coverage of this area, showing how to apply these techniques to the analysis of complex electromagnetic problems in order to obtain results with an exceptionally high degree of accuracy. Focusing on two highly-effective methods - the uniform theory of diffraction (UTD) and physical optics (PO), this book is unique in that it emphasizes how to solve real-world problems, rather than simply explaining theory like other books on the market. This first-of-its-kind resource show professionals how to apply this knowledge to a wide range of projects in the field, including antenna design, mobile communications, and RCS (radar cross section) computation. This authoritative book is supported with more than 100 illustrations and over 250 equations."
Asymptotic Statistics
Author: A. W. van der Vaart
Publisher: Cambridge University Press
ISBN: 9780521784504
Category : Mathematics
Languages : en
Pages : 470
Book Description
This book is an introduction to the field of asymptotic statistics. The treatment is both practical and mathematically rigorous. In addition to most of the standard topics of an asymptotics course, including likelihood inference, M-estimation, the theory of asymptotic efficiency, U-statistics, and rank procedures, the book also presents recent research topics such as semiparametric models, the bootstrap, and empirical processes and their applications. The topics are organized from the central idea of approximation by limit experiments, which gives the book one of its unifying themes. This entails mainly the local approximation of the classical i.i.d. set up with smooth parameters by location experiments involving a single, normally distributed observation. Thus, even the standard subjects of asymptotic statistics are presented in a novel way. Suitable as a graduate or Master s level statistics text, this book will also give researchers an overview of the latest research in asymptotic statistics.
Publisher: Cambridge University Press
ISBN: 9780521784504
Category : Mathematics
Languages : en
Pages : 470
Book Description
This book is an introduction to the field of asymptotic statistics. The treatment is both practical and mathematically rigorous. In addition to most of the standard topics of an asymptotics course, including likelihood inference, M-estimation, the theory of asymptotic efficiency, U-statistics, and rank procedures, the book also presents recent research topics such as semiparametric models, the bootstrap, and empirical processes and their applications. The topics are organized from the central idea of approximation by limit experiments, which gives the book one of its unifying themes. This entails mainly the local approximation of the classical i.i.d. set up with smooth parameters by location experiments involving a single, normally distributed observation. Thus, even the standard subjects of asymptotic statistics are presented in a novel way. Suitable as a graduate or Master s level statistics text, this book will also give researchers an overview of the latest research in asymptotic statistics.
Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications
Author: Johan Grasman
Publisher: Springer Science & Business Media
ISBN: 9783540644354
Category : Mathematics
Languages : en
Pages : 242
Book Description
Asymptotic methods are of great importance for practical applications, especially in dealing with boundary value problems for small stochastic perturbations. This book deals with nonlinear dynamical systems perturbed by noise. It addresses problems in which noise leads to qualitative changes, escape from the attraction domain, or extinction in population dynamics. The most likely exit point and expected escape time are determined with singular perturbation methods for the corresponding Fokker-Planck equation. The authors indicate how their techniques relate to the Itô calculus applied to the Langevin equation. The book will be useful to researchers and graduate students.
Publisher: Springer Science & Business Media
ISBN: 9783540644354
Category : Mathematics
Languages : en
Pages : 242
Book Description
Asymptotic methods are of great importance for practical applications, especially in dealing with boundary value problems for small stochastic perturbations. This book deals with nonlinear dynamical systems perturbed by noise. It addresses problems in which noise leads to qualitative changes, escape from the attraction domain, or extinction in population dynamics. The most likely exit point and expected escape time are determined with singular perturbation methods for the corresponding Fokker-Planck equation. The authors indicate how their techniques relate to the Itô calculus applied to the Langevin equation. The book will be useful to researchers and graduate students.
Applied Asymptotics
Author: A. R. Brazzale
Publisher: Cambridge University Press
ISBN: 9780521847032
Category : Business & Economics
Languages : en
Pages : 256
Book Description
First practical treatment of small-sample asymptotics, enabling practitioners to apply new methods with confidence.
Publisher: Cambridge University Press
ISBN: 9780521847032
Category : Business & Economics
Languages : en
Pages : 256
Book Description
First practical treatment of small-sample asymptotics, enabling practitioners to apply new methods with confidence.
Introduction to Asymptotic Methods
Author: David Y. Gao
Publisher: CRC Press
ISBN: 1420011731
Category : Mathematics
Languages : en
Pages : 270
Book Description
Among the theoretical methods for solving many problems of applied mathematics, physics, and technology, asymptotic methods often provide results that lead to obtaining more effective algorithms of numerical evaluation. Presenting the mathematical methods of perturbation theory, Introduction to Asymptotic Methods reviews the most important m
Publisher: CRC Press
ISBN: 1420011731
Category : Mathematics
Languages : en
Pages : 270
Book Description
Among the theoretical methods for solving many problems of applied mathematics, physics, and technology, asymptotic methods often provide results that lead to obtaining more effective algorithms of numerical evaluation. Presenting the mathematical methods of perturbation theory, Introduction to Asymptotic Methods reviews the most important m
Computation and Asymptotics
Author: Rudrapatna V. Ramnath
Publisher: Springer Science & Business Media
ISBN: 3642257488
Category : Mathematics
Languages : en
Pages : 126
Book Description
This book addresses the task of computation from the standpoint of asymptotic analysis and multiple scales that may be inherent in the system dynamics being studied. This is in contrast to the usual methods of numerical analysis and computation. The technical literature is replete with numerical methods such as Runge-Kutta approach and its variations, finite element methods, and so on. However, not much attention has been given to asymptotic methods for computation, although such approaches have been widely applied with great success in the analysis of dynamic systems. The presence of different scales in a dynamic phenomenon enable us to make judicious use of them in developing computational approaches which are highly efficient. Many such applications have been developed in such areas as astrodynamics, fluid mechanics and so on. This book presents a novel approach to make use of the different time constants inherent in the system to develop rapid computational methods. First, the fundamental notions of asymptotic analysis are presented with classical examples. Next, the novel systematic and rigorous approaches of system decomposition and reduced order models are presented. Next, the technique of multiple scales is discussed. Finally application to rapid computation of several aerospace systems is discussed, demonstrating the high efficiency of such methods.
Publisher: Springer Science & Business Media
ISBN: 3642257488
Category : Mathematics
Languages : en
Pages : 126
Book Description
This book addresses the task of computation from the standpoint of asymptotic analysis and multiple scales that may be inherent in the system dynamics being studied. This is in contrast to the usual methods of numerical analysis and computation. The technical literature is replete with numerical methods such as Runge-Kutta approach and its variations, finite element methods, and so on. However, not much attention has been given to asymptotic methods for computation, although such approaches have been widely applied with great success in the analysis of dynamic systems. The presence of different scales in a dynamic phenomenon enable us to make judicious use of them in developing computational approaches which are highly efficient. Many such applications have been developed in such areas as astrodynamics, fluid mechanics and so on. This book presents a novel approach to make use of the different time constants inherent in the system to develop rapid computational methods. First, the fundamental notions of asymptotic analysis are presented with classical examples. Next, the novel systematic and rigorous approaches of system decomposition and reduced order models are presented. Next, the technique of multiple scales is discussed. Finally application to rapid computation of several aerospace systems is discussed, demonstrating the high efficiency of such methods.
Asymptotics in Statistics
Author: Lucien Le Cam
Publisher: Springer Science & Business Media
ISBN: 1461211662
Category : Mathematics
Languages : en
Pages : 299
Book Description
This is the second edition of a coherent introduction to the subject of asymptotic statistics as it has developed over the past 50 years. It differs from the first edition in that it is now more 'reader friendly' and also includes a new chapter on Gaussian and Poisson experiments, reflecting their growing role in the field. Most of the subsequent chapters have been entirely rewritten and the nonparametrics of Chapter 7 have been amplified. The volume is not intended to replace monographs on specialized subjects, but will help to place them in a coherent perspective. It thus represents a link between traditional material - such as maximum likelihood, and Wald's Theory of Statistical Decision Functions -- together with comparison and distances for experiments. Much of the material has been taught in a second year graduate course at Berkeley for 30 years.
Publisher: Springer Science & Business Media
ISBN: 1461211662
Category : Mathematics
Languages : en
Pages : 299
Book Description
This is the second edition of a coherent introduction to the subject of asymptotic statistics as it has developed over the past 50 years. It differs from the first edition in that it is now more 'reader friendly' and also includes a new chapter on Gaussian and Poisson experiments, reflecting their growing role in the field. Most of the subsequent chapters have been entirely rewritten and the nonparametrics of Chapter 7 have been amplified. The volume is not intended to replace monographs on specialized subjects, but will help to place them in a coherent perspective. It thus represents a link between traditional material - such as maximum likelihood, and Wald's Theory of Statistical Decision Functions -- together with comparison and distances for experiments. Much of the material has been taught in a second year graduate course at Berkeley for 30 years.
Asymptotic Chaos Expansions in Finance
Author: David Nicolay
Publisher: Springer
ISBN: 1447165063
Category : Mathematics
Languages : en
Pages : 503
Book Description
Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. Asymptotic Chaos Expansions in Finance illustrates the ACE approach for single underlyings (such as a stock price or FX rate), baskets (indexes, spreads) and term structure models (especially SV-HJM and SV-LMM). It also establishes fundamental links between the Wiener chaos of the instantaneous volatility and the small-time asymptotic structure of the stochastic implied volatility framework. It is addressed primarily to financial mathematics researchers and graduate students, interested in stochastic volatility, asymptotics or market models. Moreover, as it contains many self-contained approximation results, it will be useful to practitioners modelling the shape of the smile and its evolution.
Publisher: Springer
ISBN: 1447165063
Category : Mathematics
Languages : en
Pages : 503
Book Description
Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. Asymptotic Chaos Expansions in Finance illustrates the ACE approach for single underlyings (such as a stock price or FX rate), baskets (indexes, spreads) and term structure models (especially SV-HJM and SV-LMM). It also establishes fundamental links between the Wiener chaos of the instantaneous volatility and the small-time asymptotic structure of the stochastic implied volatility framework. It is addressed primarily to financial mathematics researchers and graduate students, interested in stochastic volatility, asymptotics or market models. Moreover, as it contains many self-contained approximation results, it will be useful to practitioners modelling the shape of the smile and its evolution.