Power Converters for Medium Voltage Networks

Power Converters for Medium Voltage Networks PDF Author: Md. Rabiul Islam
Publisher: Springer
ISBN: 3662445298
Category : Technology & Engineering
Languages : en
Pages : 312

Get Book Here

Book Description
This book examines a number of topics, mainly in connection with advances in semiconductor devices and magnetic materials and developments in medium and large-scale renewable power plant technologies, grid integration techniques and new converter topologies, including advanced digital control systems for medium-voltage networks. The book’s individual chapters provide an extensive compilation of fundamental theories and in-depth information on current research and development trends, while also exploring new approaches to overcoming some critical limitations of conventional grid integration technologies. Its main objective is to present the design and implementation processes for medium-voltage converters, allowing the direct grid integration of renewable power plants without the need for step-up transformers.

Power Converters for Medium Voltage Networks

Power Converters for Medium Voltage Networks PDF Author: Md. Rabiul Islam
Publisher: Springer
ISBN: 3662445298
Category : Technology & Engineering
Languages : en
Pages : 312

Get Book Here

Book Description
This book examines a number of topics, mainly in connection with advances in semiconductor devices and magnetic materials and developments in medium and large-scale renewable power plant technologies, grid integration techniques and new converter topologies, including advanced digital control systems for medium-voltage networks. The book’s individual chapters provide an extensive compilation of fundamental theories and in-depth information on current research and development trends, while also exploring new approaches to overcoming some critical limitations of conventional grid integration technologies. Its main objective is to present the design and implementation processes for medium-voltage converters, allowing the direct grid integration of renewable power plants without the need for step-up transformers.

Medium Voltage DC System Architectures

Medium Voltage DC System Architectures PDF Author: Brandon Grainger
Publisher: IET
ISBN: 178561844X
Category : Technology & Engineering
Languages : en
Pages : 393

Get Book Here

Book Description
A concise and hands-on overview of medium voltage direct current (MVDC) technology for electric power grids, written by international experts with broad experience. The book covers fundamentals, converters, transformers and control for both stationary and mobile applications.

Power Converters for Medium Voltage Networks

Power Converters for Medium Voltage Networks PDF Author: Rabiul Islam
Publisher:
ISBN: 9783662445303
Category :
Languages : en
Pages : 322

Get Book Here

Book Description


Power Converters and AC Electrical Drives with Linear Neural Networks

Power Converters and AC Electrical Drives with Linear Neural Networks PDF Author: Maurizio Cirrincione
Publisher: CRC Press
ISBN: 1351833944
Category : Technology & Engineering
Languages : en
Pages : 649

Get Book Here

Book Description
The first book of its kind, Power Converters and AC Electrical Drives with Linear Neural Networks systematically explores the application of neural networks in the field of power electronics, with particular emphasis on the sensorless control of AC drives. It presents the classical theory based on space-vectors in identification, discusses control of electrical drives and power converters, and examines improvements that can be attained when using linear neural networks. The book integrates power electronics and electrical drives with artificial neural networks (ANN). Organized into four parts, it first deals with voltage source inverters and their control. It then covers AC electrical drive control, focusing on induction and permanent magnet synchronous motor drives. The third part examines theoretical aspects of linear neural networks, particularly the neural EXIN family. The fourth part highlights original applications in electrical drives and power quality, ranging from neural-based parameter estimation and sensorless control to distributed generation systems from renewable sources and active power filters. Simulation and experimental results are provided to validate the theories. Written by experts in the field, this state-of-the-art book requires basic knowledge of electrical machines and power electronics, as well as some familiarity with control systems, signal processing, linear algebra, and numerical analysis. Offering multiple paths through the material, the text is suitable for undergraduate and postgraduate students, theoreticians, practicing engineers, and researchers involved in applications of ANNs.

Modeling and control of power converters in weak and unbalanced electric grids

Modeling and control of power converters in weak and unbalanced electric grids PDF Author: Just, Hendrik
Publisher: Universitätsverlag der TU Berlin
ISBN: 379833207X
Category : Technology & Engineering
Languages : en
Pages : 236

Get Book Here

Book Description
Grid converters increasingly affect power system operation due to the increasing share of renewable energy sources and less conventional power plants. This shift in power generation leads to converter-dominated weak grids, which show critical stability phenomena but also enable converters to contribute to grid stability and voltage support. This thesis presents critical parts of converter controls and describes models to assess their characteristics. These models are used to derive design criteria and dedicated stability analysis methods for grid converter controls. Der steigende Anteil an erneuerbaren Energien in den Energieversorgungsnetzen führt zur Verdrängung konventioneller Kraftwerke. Diese Entwicklung lässt umrichterdominierte und schwache Netzabschnitte entstehen, die kritischen Stabilitätsmechanismen unterliegen, allerdings auch ermöglichen, dass Umrichter aktiv zur Netzstützung und Netzstabilität beitragen können. Die vorliegende Arbeit beschreibt kritische Regelungskomponenten der Umrichter und deren Modellierung. Auf Basis der Modelle werden Auslegungskriterien für die Regelungen abgeleitet und dedizierte Stabilitätsanalysemethoden präsentiert.

Power Electronics Converters and their Control for Renewable Energy Applications

Power Electronics Converters and their Control for Renewable Energy Applications PDF Author: Arezki Fekik
Publisher: Elsevier
ISBN: 0323914039
Category : Technology & Engineering
Languages : en
Pages : 349

Get Book Here

Book Description
Power Electronics Converters and their Control for Renewable Energy Applications provides information that helps to solve common challenges with power electronics converters, including loss by switching, heating of power switches, management of switching time, improvement of the quality of the signals delivered by power converters, and improvement of the quality of energy produced by renewable energy sources. This book is of interest to academics, researchers, and engineers in renewable energy, power systems, electrical engineering, electronics, and mechanical engineering. - Includes important visual illustrations and imagery of concise circuit schematics and renewable energy applications - Features a templated approach for step-by-step implementation of the new MPPT algorithm based on recent and intelligent techniques - Provides methods for optimal harnessing of energy from renewable energy sources and converter topology synthesis

Advanced DC-DC Power Converters and Switching Converters

Advanced DC-DC Power Converters and Switching Converters PDF Author: Salvatore Musumeci
Publisher: MDPI
ISBN: 303650446X
Category : Technology & Engineering
Languages : en
Pages : 188

Get Book Here

Book Description
Nowadays, power electronics is an enabling technology in the energy development scenario. Furthermore, power electronics is strictly linked with several fields of technological growth, such as consumer electronics, IT and communications, electrical networks, utilities, industrial drives and robotics, and transportation and automotive sectors. Moreover, the widespread use of power electronics enables cost savings and minimization of losses in several technology applications required for sustainable economic growth. The topologies of DC–DC power converters and switching converters are under continuous development and deserve special attention to highlight the advantages and disadvantages for use increasingly oriented towards green and sustainable development. DC–DC converter topologies are developed in consideration of higher efficiency, reliable control switching strategies, and fault-tolerant configurations. Several types of switching converter topologies are involved in isolated DC–DC converter and nonisolated DC–DC converter solutions operating in hard-switching and soft-switching conditions. Switching converters have applications in a broad range of areas in both low and high power densities. The articles presented in the Special Issue titled "Advanced DC-DC Power Converters and Switching Converters" consolidate the work on the investigation of the switching converter topology considering the technological advances offered by innovative wide-bandgap devices and performance optimization methods in control strategies used.

Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems

Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems PDF Author: Kamran Sharifabadi
Publisher: John Wiley & Sons
ISBN: 1118851528
Category : Science
Languages : en
Pages : 415

Get Book Here

Book Description
Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission. Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids. Key features: Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland. Comprehensive explanation of MMC application in HVDC and MTDC transmission technology. Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore. Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals. A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website. This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.

Voltage-Sourced Converters in Power Systems

Voltage-Sourced Converters in Power Systems PDF Author: Amirnaser Yazdani
Publisher: John Wiley & Sons
ISBN: 0470551569
Category : Technology & Engineering
Languages : en
Pages : 473

Get Book Here

Book Description
Presents Fundamentals of Modeling, Analysis, and Control of Electric Power Converters for Power System Applications Electronic (static) power conversion has gained widespread acceptance in power systems applications; electronic power converters are increasingly employed for power conversion and conditioning, compensation, and active filtering. This book presents the fundamentals for analysis and control of a specific class of high-power electronic converters—the three-phase voltage-sourced converter (VSC). Voltage-Sourced Converters in Power Systems provides a necessary and unprecedented link between the principles of operation and the applications of voltage-sourced converters. The book: Describes various functions that the VSC can perform in electric power systems Covers a wide range of applications of the VSC in electric power systems—including wind power conversion systems Adopts a systematic approach to the modeling and control design problems Illustrates the control design procedures and expected performance based on a comprehensive set of examples and digital computer time-domain simulation studies This comprehensive text presents effective techniques for mathematical modeling and control design, and helps readers understand the procedures and analysis steps. Detailed simulation case studies are included to highlight the salient points and verify the designs. Voltage-Sourced Converters in Power Systems is an ideal reference for senior undergraduate and graduate students in power engineering programs, practicing engineers who deal with grid integration and operation of distributed energy resource units, design engineers, and researchers in the area of electric power generation, transmission, distribution, and utilization.

Multilevel Converters

Multilevel Converters PDF Author: Salman Ahmad
Publisher: John Wiley & Sons
ISBN: 1394167350
Category : Technology & Engineering
Languages : en
Pages : 390

Get Book Here

Book Description
Discover the deep insights into the operation, modulation, and control strategies of multilevel converters, alongside their recent applications in variable speed drives, renewable energy generation, and power systems. Multilevel converters have gained attention in recent years for medium/high voltage and high power industrial and residential applications. The main advantages of multilevel converters over two level converters include less voltage stress on power semiconductors, low dv/dt, low common voltage, reduced electromagnetic interference, and low total harmonics distortion, among others. Better output power quality is ensured by increasing the number of levels in the synthesized output voltage waveform. Several multilevel topologies have been reported in the literature, such as neutral point clamped (NPC), flying capacitor (FC), cascaded H-bridge (CHB), hybrid cascaded H-bridge, asymmetrical cascaded H-bridge, modular multilevel converters (MMC), active neutral point clamped converters (ANPC), and packed U-cell type converters and various reduced device counts and a reduced number of source-based topologies have been proposed in literature. The multilevel converter, although a proven and enabling technology, still presents numerous challenges in topologies, modulation, and control, as well as in need-based applications. Since multilevel converters offer a wide range of possibilities, research and development in the areas of multilevel converter topologies, modulation, and control in various applications are still growing. To further improve multilevel converter energy efficiency, reliability, power density, and cost, many research groups across the world are working to broaden the application areas of multilevel converters and make them more attractive and competitive compared to classic topologies. Multilevel Converters intends to provide deep insight about multilevel converter operation, modulation, and control strategies and various recent applications of multilevel converters such as in variable speed drives, renewable energy generation, and power systems.