Author: Andrea Bonfiglioli
Publisher: Springer Science & Business Media
ISBN: 3540718974
Category : Mathematics
Languages : en
Pages : 812
Book Description
This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.
Stratified Lie Groups and Potential Theory for Their Sub-Laplacians
Author: Andrea Bonfiglioli
Publisher: Springer Science & Business Media
ISBN: 3540718974
Category : Mathematics
Languages : en
Pages : 812
Book Description
This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.
Publisher: Springer Science & Business Media
ISBN: 3540718974
Category : Mathematics
Languages : en
Pages : 812
Book Description
This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.
Differential Geometry and Lie Groups for Physicists
Author: Marián Fecko
Publisher: Cambridge University Press
ISBN: 1139458035
Category : Science
Languages : en
Pages : 11
Book Description
Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.
Publisher: Cambridge University Press
ISBN: 1139458035
Category : Science
Languages : en
Pages : 11
Book Description
Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.
Potential Theory and Geometry on Lie Groups
Author: N. Th. Varopoulos
Publisher: Cambridge University Press
ISBN: 1107036496
Category : Mathematics
Languages : en
Pages : 625
Book Description
Complete account of a new classification of connected Lie groups in two classes, including open problems to motivate further study.
Publisher: Cambridge University Press
ISBN: 1107036496
Category : Mathematics
Languages : en
Pages : 625
Book Description
Complete account of a new classification of connected Lie groups in two classes, including open problems to motivate further study.
An Introduction to Lie Groups and Lie Algebras
Author: Alexander A. Kirillov
Publisher: Cambridge University Press
ISBN: 0521889693
Category : Mathematics
Languages : en
Pages : 237
Book Description
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Publisher: Cambridge University Press
ISBN: 0521889693
Category : Mathematics
Languages : en
Pages : 237
Book Description
This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.
Random Walks and Discrete Potential Theory
Author: M. Picardello
Publisher: Cambridge University Press
ISBN: 9780521773126
Category : Mathematics
Languages : en
Pages : 378
Book Description
Comprehensive and interdisciplinary text covering the interplay between random walks and structure theory.
Publisher: Cambridge University Press
ISBN: 9780521773126
Category : Mathematics
Languages : en
Pages : 378
Book Description
Comprehensive and interdisciplinary text covering the interplay between random walks and structure theory.
Hardy Inequalities on Homogeneous Groups
Author: Michael Ruzhansky
Publisher: Springer
ISBN: 303002895X
Category : Mathematics
Languages : en
Pages : 579
Book Description
This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hörmander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.
Publisher: Springer
ISBN: 303002895X
Category : Mathematics
Languages : en
Pages : 579
Book Description
This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hörmander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.
Matrix Groups
Author: Andrew Baker
Publisher: Springer Science & Business Media
ISBN: 1447101839
Category : Mathematics
Languages : en
Pages : 332
Book Description
This book offers a first taste of the theory of Lie groups, focusing mainly on matrix groups: closed subgroups of real and complex general linear groups. The first part studies examples and describes classical families of simply connected compact groups. The second section introduces the idea of a lie group and explores the associated notion of a homogeneous space using orbits of smooth actions. The emphasis throughout is on accessibility.
Publisher: Springer Science & Business Media
ISBN: 1447101839
Category : Mathematics
Languages : en
Pages : 332
Book Description
This book offers a first taste of the theory of Lie groups, focusing mainly on matrix groups: closed subgroups of real and complex general linear groups. The first part studies examples and describes classical families of simply connected compact groups. The second section introduces the idea of a lie group and explores the associated notion of a homogeneous space using orbits of smooth actions. The emphasis throughout is on accessibility.
Representations of Solvable Lie Groups and their Applications
Author: Didier Arnal
Publisher: Cambridge University Press
ISBN: 1108428096
Category : Mathematics
Languages : en
Pages : 463
Book Description
A complete and self-contained account of the basic theory of unitary group representations for graduate students and researchers.
Publisher: Cambridge University Press
ISBN: 1108428096
Category : Mathematics
Languages : en
Pages : 463
Book Description
A complete and self-contained account of the basic theory of unitary group representations for graduate students and researchers.
Lectures on Lie Groups
Author: J. F. Adams
Publisher: University of Chicago Press
ISBN: 0226005305
Category : Mathematics
Languages : en
Pages : 192
Book Description
"[Lectures in Lie Groups] fulfills its aim admirably and should be a useful reference for any mathematician who would like to learn the basic results for compact Lie groups. . . . The book is a well written basic text [and Adams] has done a service to the mathematical community."—Irving Kaplansky
Publisher: University of Chicago Press
ISBN: 0226005305
Category : Mathematics
Languages : en
Pages : 192
Book Description
"[Lectures in Lie Groups] fulfills its aim admirably and should be a useful reference for any mathematician who would like to learn the basic results for compact Lie groups. . . . The book is a well written basic text [and Adams] has done a service to the mathematical community."—Irving Kaplansky
Lie Groups, Lie Algebras, and Their Representations
Author: V.S. Varadarajan
Publisher: Springer Science & Business Media
ISBN: 1461211263
Category : Mathematics
Languages : en
Pages : 444
Book Description
This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task.
Publisher: Springer Science & Business Media
ISBN: 1461211263
Category : Mathematics
Languages : en
Pages : 444
Book Description
This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task.