Pilot-plant Studies of Carbon Dioxide Absorption Into DEA Promoted Potash Solutions

Pilot-plant Studies of Carbon Dioxide Absorption Into DEA Promoted Potash Solutions PDF Author: Timothy Patrick Cleary
Publisher:
ISBN:
Category :
Languages : en
Pages : 126

Get Book Here

Book Description

Pilot-plant Studies of Carbon Dioxide Absorption Into DEA Promoted Potash Solutions

Pilot-plant Studies of Carbon Dioxide Absorption Into DEA Promoted Potash Solutions PDF Author: Timothy Patrick Cleary
Publisher:
ISBN:
Category :
Languages : en
Pages : 126

Get Book Here

Book Description


Pilot Plant Studies of Carbon Dioxide Absorption by Diethanolamine Solution

Pilot Plant Studies of Carbon Dioxide Absorption by Diethanolamine Solution PDF Author: Thumrong Pungrasmi
Publisher:
ISBN:
Category : Carbon dioxide
Languages : en
Pages : 220

Get Book Here

Book Description


Carbon Dioxide Absorption Into Piperazine Promoted Potassium Carbonate Using Structured Packing

Carbon Dioxide Absorption Into Piperazine Promoted Potassium Carbonate Using Structured Packing PDF Author: Eric Chen
Publisher:
ISBN:
Category : Carbon dioxide
Languages : en
Pages : 1010

Get Book Here

Book Description
A large-scale pilot plant (0.43 m ID) was extensively modified and converted into an absorber/stripper system to demonstrate CO2 capture technology using aqueous piperazine promoted potassium carbonate for coalfired power plants. Four pilot plant campaigns were completed. Three campaigns were conducted using 5 m K/2.5 m PZ and 6.4 m K/1.6 m PZ. Flexipac 1Y and Flexipac AQ Style 20 structured packing were used in the absorber. The stripper was tested with 14 sieve trays, IMTP #40 random packing, and Flexipac AQ Style 20 packing. Monoethanolamine (7 m) was tested in the third campaign to establish a base case. An approximate rate analysis showed that 5 m K+/2.5 m PZ is two times faster than 7 m MEA and three times faster than 6.4 m K+/1.6 m PZ. The location of the temperature bulge moves from the top of the column to bottom as the liquid to gas flow rate ratio is increased. Foaming occurred in the absorber in the first two campaigns and occurred in the stripper in the fourth campaign. Data from the pilot plant was used to develop a K+/PZ absorber model in Aspen Plus® RateSep[trademark]. The Hilliard (2005) Aspen Plus® VLE model and the kinetics developed by Cullinane (2005) were incorporated in the model. Data-Fit was simultaneously used to reconcile pilot plant data and perform a regression of the interfacial area and heat loss parameters for the RateSep[trademark] absorber model. The lean loading for the pilot plant data was shifted down by 10% to account for a discrepancy with the Cullinane vapor-liquid equilibrium data. The Data-Fit results showed that the average interfacial area for Flexipac 1Y was 80% of the value measure by the air-water column. The average interfacial area for Flexipac AQ Style 20 for 5 m K+/2.5 m PZ was 56% of the air-water measurement. The CO2 heat of absorption may not have been adequately predicted by the RateSep[trademark] absorber model because the regressed values of heat loss were consistent with forced convection.

Experimental and Theoretical Study of Carbon Dioxide Absorption Into Potassium Carbonate Solution Promoted with Enzyme

Experimental and Theoretical Study of Carbon Dioxide Absorption Into Potassium Carbonate Solution Promoted with Enzyme PDF Author: Arezoo Khodayari
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
According to the Intergovernmental Panel on Climate Change (IPCC), carbon dioxide (CO2) concentration in the atmosphere has increased from its pre-industrial value of 280 parts per million by volume (ppmv) to 384 ppmv. IPCC predicts that CO2 concentration in the atmosphere will rise to 550 ppmv by the year 2100, if anthropogenic emissions continue to increase. The average temperature at the Earth's surface could increase 1.8-4.0K above the 1990 levels by the end of this century. Such warming is anticipated to cause sea level rise, increased intensity and frequency of extreme weather events, ice shelf disruption, and changes in rainfall patterns. As a result, reducing CO2 emissions from anthropogenic sources is a high priority. Combustion of fossil fuels for power generation is the major contributors of CO2 emission into the environment. Currently, CO2 chemical absorption using monoethanolamine (MEA) as a solvent is the best available option for CO2 capture from flue gas streams. The issue with this technology is the high capture cost which ranges from $50/metric ton to $70/metric ton CO2 avoided. Energy consumption by the process contributes to 60% of the cost. Thus, use of solvents with lower heats of absorption is preferable. A novel process called Integrated Vacuum Carbonate Absorption Process (IVCAP), which employs potassium carbonate (PC) as a solvent, has been proposed. Since chemical affinity of CO2 to K2CO3 is weak compared to MEA, the regeneration of CO2-rich solution can be operated under vacuum at a lower temperature. Hence, a low quality steam from the power plant steam cycle can be used as the heat source for the regeneration. IVCAP process is expected to have 25-30% lower energy requirements as compared to an MEA-based process. However, compared with the MEA solution, PC solutions with low heats of absorption generally exhibit much slower CO2 absorption rates. Hence, a biological catalyst, carbonic anhydrase (CA) was investigated to promote the rate of CO2 absorption into select PC solutions. Experiments were performed in a stirred-tank reactor to evaluate the activity of the CA enzyme under IVCAP conditions. Results revealed that addition of up to 300 mg/l CA enzyme to the PC solutions at 25oC increases the absorption rate by a factor of 6-20 when compared with the same solution without the CA. It was also observed that, the CO2 absorption rates into the aqueous PC solutions with different initial conversion levels of PC to potassium bicarbonate are similar, with differences no larger than 20%, when the concentration of CA enzyme is 300 mg/l. It was also observed that, at the 300 mg/l CA concentration, increasing the temperature from 25oC to 50oC reduces the rate of CO2 absorption, by up to 20%. A mathematical model based on Higbie's penetration theory was developed to simulate the absorption of CO2 into the PC solutions. A comparison of modeled to experimental absorption rates of CO2 provided agreement within 30%. The modeling results revealed that at CA concentrations > 3,000 mg/l, the absorption rate of CO2 is independent of CA concentration. Compared to the enzyme concentration (300 mg/l) used in this study, a further increase of enzyme concentration to a level not larger than 3,000 mg/l could further increase the absorption rate of CO2. Based on the experimental and modeling results obtained in this research, it is recommended that the CO2 absorption rate into PC-CA be further enhanced by improving other parameters such as the activity of CA enzyme and design optimization of the absorption column including the type of packing material. Further work is required to investigate the stability of the CA enzyme at longer test duration and use of immobilized CA enzyme. Effectiveness of the regeneration cycle also needs to be investigated. Further work should also include the test of an integrated absorption/ regeneration system for CO2 capture at a real flue gas condition. 0́3

Pilot Plant Tests on Carbon Dioxide Absorption Using Diethanolamine Solutions

Pilot Plant Tests on Carbon Dioxide Absorption Using Diethanolamine Solutions PDF Author: Yun-Ching Lu
Publisher:
ISBN:
Category :
Languages : en
Pages : 282

Get Book Here

Book Description


Gas Purification

Gas Purification PDF Author: Arthur L Kohl
Publisher: Elsevier
ISBN: 0080507204
Category : Mathematics
Languages : en
Pages : 1409

Get Book Here

Book Description
This massively updated and expanded fifth edition is the most complete, authoritative engineering treatment of the dehydration and gas purification processes used in industry today. Of great value to design and operations engineers, it gives practical process and equipment design descriptions, basic data, plant performance results, and other detailed information on gas purification processes and hardware. This latest edition incorporates all significant advances in the field since 1985.You will find major new chapters on the rapidly expanding technologies of nitrogen oxide control, with discussions of regulatory requirements and available processes; absorption in physical solvents, covering single component and mixed solvent systems; and membrane permeation, with emphasis on the gas purification applications of membrane units. In addition, new sections cover areas of strong current interest, particularly liquid hydrocarbon treating, Claus plant tail gas treating, thermal oxidation of volatile organic compounds, and sulfur scavenging processes.This volume brings you expanded coverage of alkanolamines for hydrogen sulfide and carbon dioxide removal, the removal and use of ammonia in gas purification, the use of alkaline salt solutions for acid gas removal, and the use of water to absorb gas impurities. The basic technologies and all significant advances in the following areas are thoroughly described: sulfur dioxide removal and recovery processes, processes for converting hydrogen sulfide to sulfur, liquid phase oxidation processes for hydrogen sulfide removal, the absorption of water vapor by dehydrating solutions, gas dehydration and purification by adsorption, and the catalytic and thermal conversion of gas impurities.

Handbook of Ionic Liquids

Handbook of Ionic Liquids PDF Author: Sanchayita Rajkhowa
Publisher: John Wiley & Sons
ISBN: 3527350667
Category : Science
Languages : en
Pages : 533

Get Book Here

Book Description
Handbook of Ionic Liquids A one-stop reference for researchers interested in ionic liquids and their applications Handbook of Ionic Liquids: Fundamentals, Applications, and Sustainability, constitutes an overview of the latest advances in ionic liquid chemistry. It offers a comprehensive summary of the development history of ionic liquids, their design, and the diverse array of applications—including green and sustainable synthesis, catalysis, drug development and medicine, biotechnology, materials science, and electrochemistry. The authors explain a variety of processes used to develop novel materials with ionic liquids and describe likely future developments using practical examples taken from contemporary research and development in the field. The book includes discussions of biomass conversion, CO2 capture, and more. You’ll also discover: A thorough introduction to the theory of ionic liquids, as well as their different types and recycling methods Comprehensive explorations of the physico-chemical properties of ionic liquids Practical discussions of ionic liquid synthesis and analysis, including green synthesis and heterocyclic chemistry applications Summary of the use of ionic liquids in materials science, including polymers, energy conversion, and storage devices Perfect for organic, catalytic, physical, analytical, and environmental chemists, Handbook of Ionic Liquids: Fundamentals, Applications, and Sustainability will also benefit electrochemists, materials scientists, and biotechnologists with an interest in ionic liquids and their application.

Chemical Kinetics and Mechanism

Chemical Kinetics and Mechanism PDF Author: M Mortimer
Publisher: Royal Society of Chemistry
ISBN: 1847557805
Category : Science
Languages : en
Pages : 266

Get Book Here

Book Description
Chemical Kinetics and Mechanism considers the role of rate of reaction. It begins by introducing chemical kinetics and the analysis of reaction mechanism, from basic well-established concepts to leading edge research. Organic reaction mechanisms are then discussed, encompassing curly arrows, nucleophilic substitution and E1 and E2 elimination reactions. The book concludes with a Case Study on Zeolites, which examines their structure and internal dimensions in relation to their behaviour as molecular sieves and catalysts. The accompanying CD-ROM contains the "Kinetics Toolkit", a graph-plotting application designed for manipulation and analysis of kinetic data, which is built into many of the examples, questions and exercises in the text. There are also interactive activities illustrating reaction mechanisms. The Molecular World series provides an integrated introduction to all branches of chemistry for both students wishing to specialise and those wishing to gain a broad understanding of chemistry and its relevance to the everyday world and to other areas of science. The books, with their Case Studies and accompanying multi-media interactive CD-ROMs, will also provide valuable resource material for teachers and lecturers. (The CD-ROMs are designed for use on a PC running Windows 95, 98, ME or 2000.)

Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption

Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption PDF Author: Wojciech M. Budzianowski
Publisher: Springer
ISBN: 3319472623
Category : Technology & Engineering
Languages : en
Pages : 282

Get Book Here

Book Description
This book reviews and characterises promising single-compound solvents, solvent blends and advanced solvent systems suitable for CO2 capture applications using gas-liquid absorption. Focusing on energy efficient solvents with minimal adverse environmental impact, the contributions included analyse the major technological advantages, as well as research and development challenges of promising solvents and solvent systems in various sustainable CO2 capture applications. It provides a valuable source of information for undergraduate and postgraduate students, as well as for chemical engineers and energy specialists.

Absorption-Based Post-Combustion Capture of Carbon Dioxide

Absorption-Based Post-Combustion Capture of Carbon Dioxide PDF Author: Paul Feron
Publisher: Woodhead Publishing
ISBN: 0081005156
Category : Technology & Engineering
Languages : en
Pages : 816

Get Book Here

Book Description
Absorption-Based Post-Combustion Capture of Carbon Dioxide provides a comprehensive and authoritative review of the use of absorbents for post-combustion capture of carbon dioxide. As fossil fuel-based power generation technologies are likely to remain key in the future, at least in the short- and medium-term, carbon capture and storage will be a critical greenhouse gas reduction technique. Post-combustion capture involves the removal of carbon dioxide from flue gases after fuel combustion, meaning that carbon dioxide can then be compressed and cooled to form a safely transportable liquid that can be stored underground. - Provides researchers in academia and industry with an authoritative overview of the amine-based methods for carbon dioxide capture from flue gases and related processes - Editors and contributors are well known experts in the field - Presents the first book on this specific topic