Physics of Geochemical Mechanics and Deep Neural Network Modeling with Diffusion Augmentation

Physics of Geochemical Mechanics and Deep Neural Network Modeling with Diffusion Augmentation PDF Author: Mitsuhiro Toriumi
Publisher: Springer
ISBN: 9789819793754
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
This book provides a new data augmentation method based on the local stochastic distribution patterns in natural time series data of global and regional seismicity rates and their correlated seismicity rates. The augmentation procedure is called the diffusion - denoising augmentation method from the local Gaussian distribution of segmented data of long time series. This method makes it possible to apply the deep machine learning necessary to neural network prediction of rare large earthquakes in the global and regional earth system. The book presents the physical background of the processes showing the development of characteristic features in the global and regional correlated seismicity dynamics, which are manifested by the successive time series of 1990-2023. Physical processes of the correlated global seismicity change and the earth's rotation, fluctuation of plate motion, and the earth's ellipsoid ratio (C20 of satellite gravity change) are proposed in this book. The equivalency between Gaussian seismicity network dynamics and the minimal nonlinear dynamics model of correlated seismicity rates is also provided. In addition, the book contains simulated models of the shear crack jog wave, precipitation of minerals in the jog, and jog accumulation inducing shear crack propagation which leads to earthquakes in the plate boundary rocks under permeable fluid flow.

Physics of Geochemical Mechanics and Deep Neural Network Modeling with Diffusion Augmentation

Physics of Geochemical Mechanics and Deep Neural Network Modeling with Diffusion Augmentation PDF Author: Mitsuhiro Toriumi
Publisher: Springer
ISBN: 9789819793754
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
This book provides a new data augmentation method based on the local stochastic distribution patterns in natural time series data of global and regional seismicity rates and their correlated seismicity rates. The augmentation procedure is called the diffusion - denoising augmentation method from the local Gaussian distribution of segmented data of long time series. This method makes it possible to apply the deep machine learning necessary to neural network prediction of rare large earthquakes in the global and regional earth system. The book presents the physical background of the processes showing the development of characteristic features in the global and regional correlated seismicity dynamics, which are manifested by the successive time series of 1990-2023. Physical processes of the correlated global seismicity change and the earth's rotation, fluctuation of plate motion, and the earth's ellipsoid ratio (C20 of satellite gravity change) are proposed in this book. The equivalency between Gaussian seismicity network dynamics and the minimal nonlinear dynamics model of correlated seismicity rates is also provided. In addition, the book contains simulated models of the shear crack jog wave, precipitation of minerals in the jog, and jog accumulation inducing shear crack propagation which leads to earthquakes in the plate boundary rocks under permeable fluid flow.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 762

Get Book Here

Book Description


Model Order Reduction: Theory, Research Aspects and Applications

Model Order Reduction: Theory, Research Aspects and Applications PDF Author: Wilhelmus H. Schilders
Publisher: Springer Science & Business Media
ISBN: 3540788417
Category : Mathematics
Languages : en
Pages : 471

Get Book Here

Book Description
The idea for this book originated during the workshop “Model order reduction, coupled problems and optimization” held at the Lorentz Center in Leiden from S- tember 19–23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.

Reduced Order Methods for Modeling and Computational Reduction

Reduced Order Methods for Modeling and Computational Reduction PDF Author: Alfio Quarteroni
Publisher: Springer
ISBN: 3319020900
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics. Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems.

Reduced-Order Modeling (ROM) for Simulation and Optimization

Reduced-Order Modeling (ROM) for Simulation and Optimization PDF Author: Winfried Keiper
Publisher: Springer
ISBN: 3319753193
Category : Mathematics
Languages : en
Pages : 184

Get Book Here

Book Description
This edited monograph collects research contributions and addresses the advancement of efficient numerical procedures in the area of model order reduction (MOR) for simulation, optimization and control. The topical scope includes, but is not limited to, new out-of-the-box algorithmic solutions for scientific computing, e.g. reduced basis methods for industrial problems and MOR approaches for electrochemical processes. The target audience comprises research experts and practitioners in the field of simulation, optimization and control, but the book may also be beneficial for graduate students alike.

Characterization, Modeling, Monitoring, and Remediation of Fractured Rock

Characterization, Modeling, Monitoring, and Remediation of Fractured Rock PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309373727
Category : Science
Languages : en
Pages : 177

Get Book Here

Book Description
Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.

Full Seismic Waveform Modelling and Inversion

Full Seismic Waveform Modelling and Inversion PDF Author: Andreas Fichtner
Publisher: Springer Science & Business Media
ISBN: 3642158072
Category : Science
Languages : en
Pages : 352

Get Book Here

Book Description
Recent progress in numerical methods and computer science allows us today to simulate the propagation of seismic waves through realistically heterogeneous Earth models with unprecedented accuracy. Full waveform tomography is a tomographic technique that takes advantage of numerical solutions of the elastic wave equation. The accuracy of the numerical solutions and the exploitation of complete waveform information result in tomographic images that are both more realistic and better resolved. This book develops and describes state of the art methodologies covering all aspects of full waveform tomography including methods for the numerical solution of the elastic wave equation, the adjoint method, the design of objective functionals and optimisation schemes. It provides a variety of case studies on all scales from local to global based on a large number of examples involving real data. It is a comprehensive reference on full waveform tomography for advanced students, researchers and professionals.

A Framework for K-12 Science Education

A Framework for K-12 Science Education PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309214459
Category : Education
Languages : en
Pages : 400

Get Book Here

Book Description
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.

Deep Learning in Biology and Medicine

Deep Learning in Biology and Medicine PDF Author: Davide Bacciu
Publisher: World Scientific Publishing Europe Limited
ISBN: 9781800610934
Category : Artificial intelligence
Languages : en
Pages : 0

Get Book Here

Book Description
Biology, medicine and biochemistry have become data-centric fields for which Deep Learning methods are delivering groundbreaking results. Addressing high impact challenges, Deep Learning in Biology and Medicine provides an accessible and organic collection of Deep Learning essays on bioinformatics and medicine. It caters for a wide readership, ranging from machine learning practitioners and data scientists seeking methodological knowledge to address biomedical applications, to life science specialists in search of a gentle reference for advanced data analytics.With contributions from internationally renowned experts, the book covers foundational methodologies in a wide spectrum of life sciences applications, including electronic health record processing, diagnostic imaging, text processing, as well as omics-data processing. This survey of consolidated problems is complemented by a selection of advanced applications, including cheminformatics and biomedical interaction network analysis. A modern and mindful approach to the use of data-driven methodologies in the life sciences also requires careful consideration of the associated societal, ethical, legal and transparency challenges, which are covered in the concluding chapters of this book.

Global Seismicity Dynamics and Data-Driven Science

Global Seismicity Dynamics and Data-Driven Science PDF Author: Mitsuhiro Toriumi
Publisher: Springer Nature
ISBN: 981155109X
Category : Science
Languages : en
Pages : 235

Get Book Here

Book Description
The recent explosion of global and regional seismicity data in the world requires new methods of investigation of microseismicity and development of their modelling to understand the nature of whole earth mechanics. In this book, the author proposes a powerful tool to reveal the characteristic features of global and regional microseismicity big data accumulated in the databases of the world. The method proposed in this monograph is based on (1) transformation of stored big data to seismicity density data archives, (2) linear transformation of microseismicity density data matrixes to correlated seismicity matrixes by means of the singular value decomposition method, (3) time series analyses of globally and regionally correlated seismicity rates, and (4) the minimal non-linear equations approximation of their correlated seismicity rate dynamics. Minimal non-linear modelling is the manifestation for strongly correlated seismicity time series controlled by Langevin-type stochastic dynamic equations involving deterministic terms and random Gaussian noises. A deterministic term is composed minimally with correlated seismicity rate vectors of a linear term and of a term with a third exponent. Thus, the dynamics of correlated seismicity in the world contains linearly changing stable nodes and rapid transitions between them with transient states. This book contains discussions of future possibilities of stochastic extrapolations of global and regional seismicity in order to reduce earthquake disasters worldwide. The dataset files are available online and can be downloaded at springer.com.