Author: Mikhail Korzhik
Publisher: Springer Nature
ISBN: 3030219666
Category : Science
Languages : en
Pages : 258
Book Description
This book presents the current advances in understanding of the fast excitation transfer processes in inorganic scintillation materials, the discovery of new materials exhibiting excellent time resolution, and the results on the evaluation of timing limits for scintillation detectors. The book considers in-depth basic principles of primary processes in energy relaxation, which play a key role in creating scintillating centers to meet a growing demand for knowledge to develop new materials combining high energy and time resolutions. The rate of relaxation varies. However, the goal is to make it extremely fast, occurring within the ps domain or even shorter. The book focuses on fast processes in scintillation materials. This approach enables in-depth understanding of fundamental processes in scintillation and supports the efforts to push the time resolution of scintillation detectors towards 10 ps target. Sophisticated theoretical and advanced experimental research conducted in the last decade is reviewed. Engineering and control of the energy transfer processes in the scintillation materials are addressed. The new era in development of instrumentation for detection of ionizing radiation in high- energy physics experiments, medical imaging and industrial applications is introduced. This book reviews modern trends in the description of the scintillation build up processes in inorganic materials, transient phenomena, and engineering of the scintillation properties. It also provides reliable background of scientific and educational information to stimulate new ideas for readers to implement in their research and engineering. The book is aimed at providing a coherent updated background of scientific and instructive information to stimulate new ideas for readers in their research and engineering.
Physics of Fast Processes in Scintillators
Author: Mikhail Korzhik
Publisher: Springer Nature
ISBN: 3030219666
Category : Science
Languages : en
Pages : 258
Book Description
This book presents the current advances in understanding of the fast excitation transfer processes in inorganic scintillation materials, the discovery of new materials exhibiting excellent time resolution, and the results on the evaluation of timing limits for scintillation detectors. The book considers in-depth basic principles of primary processes in energy relaxation, which play a key role in creating scintillating centers to meet a growing demand for knowledge to develop new materials combining high energy and time resolutions. The rate of relaxation varies. However, the goal is to make it extremely fast, occurring within the ps domain or even shorter. The book focuses on fast processes in scintillation materials. This approach enables in-depth understanding of fundamental processes in scintillation and supports the efforts to push the time resolution of scintillation detectors towards 10 ps target. Sophisticated theoretical and advanced experimental research conducted in the last decade is reviewed. Engineering and control of the energy transfer processes in the scintillation materials are addressed. The new era in development of instrumentation for detection of ionizing radiation in high- energy physics experiments, medical imaging and industrial applications is introduced. This book reviews modern trends in the description of the scintillation build up processes in inorganic materials, transient phenomena, and engineering of the scintillation properties. It also provides reliable background of scientific and educational information to stimulate new ideas for readers to implement in their research and engineering. The book is aimed at providing a coherent updated background of scientific and instructive information to stimulate new ideas for readers in their research and engineering.
Publisher: Springer Nature
ISBN: 3030219666
Category : Science
Languages : en
Pages : 258
Book Description
This book presents the current advances in understanding of the fast excitation transfer processes in inorganic scintillation materials, the discovery of new materials exhibiting excellent time resolution, and the results on the evaluation of timing limits for scintillation detectors. The book considers in-depth basic principles of primary processes in energy relaxation, which play a key role in creating scintillating centers to meet a growing demand for knowledge to develop new materials combining high energy and time resolutions. The rate of relaxation varies. However, the goal is to make it extremely fast, occurring within the ps domain or even shorter. The book focuses on fast processes in scintillation materials. This approach enables in-depth understanding of fundamental processes in scintillation and supports the efforts to push the time resolution of scintillation detectors towards 10 ps target. Sophisticated theoretical and advanced experimental research conducted in the last decade is reviewed. Engineering and control of the energy transfer processes in the scintillation materials are addressed. The new era in development of instrumentation for detection of ionizing radiation in high- energy physics experiments, medical imaging and industrial applications is introduced. This book reviews modern trends in the description of the scintillation build up processes in inorganic materials, transient phenomena, and engineering of the scintillation properties. It also provides reliable background of scientific and educational information to stimulate new ideas for readers to implement in their research and engineering. The book is aimed at providing a coherent updated background of scientific and instructive information to stimulate new ideas for readers in their research and engineering.
Physical Processes in Inorganic Scintillators
Author: Piotr A. Rodnyi
Publisher: CRC Press
ISBN: 0429611811
Category : Science
Languages : en
Pages : 240
Book Description
During the last ten to fifteen years, researchers have made considerable progress in the study of inorganic scintillators. New scintillation materials have been investigated, novel scintillation mechanisms have been discovered, and additional scintillator applications have appeared. Demand continues for new and improved scintillation materials for a variety of applications including nuclear and high energy physics, astrophysics, medical imaging, geophysical exploration, radiation detection, and many other fields. However, until now there have been no books available that address in detail the complex scintillation processes associated with these new developments. Now, a world leader in the theory and applications of scintillation processes integrates the latest scientific advances of scintillation into a new work, Physical Processes in Inorganic Scintillators. Written by distinguished researcher Piotr Rodnyi, this volume explores this challenging subject, explains the complexities of scintillation from a modern point of view, and illuminates the way to the development of better scintillation materials. This unique work first defines the fundamental physical processes underlying scintillation and governing the primary scintillation characteristics of light output, decay time, emission spectrum, and radiation hardness. The book then discusses the complicated mechanisms of energy conversion and transformation in inorganic scintillators. The section on the role of defects in energy transfer and scintillation efficiency will be of special interest. Throughout, the author does not offer complicated derivations of equations but, instead, presents useful equations with practical results.
Publisher: CRC Press
ISBN: 0429611811
Category : Science
Languages : en
Pages : 240
Book Description
During the last ten to fifteen years, researchers have made considerable progress in the study of inorganic scintillators. New scintillation materials have been investigated, novel scintillation mechanisms have been discovered, and additional scintillator applications have appeared. Demand continues for new and improved scintillation materials for a variety of applications including nuclear and high energy physics, astrophysics, medical imaging, geophysical exploration, radiation detection, and many other fields. However, until now there have been no books available that address in detail the complex scintillation processes associated with these new developments. Now, a world leader in the theory and applications of scintillation processes integrates the latest scientific advances of scintillation into a new work, Physical Processes in Inorganic Scintillators. Written by distinguished researcher Piotr Rodnyi, this volume explores this challenging subject, explains the complexities of scintillation from a modern point of view, and illuminates the way to the development of better scintillation materials. This unique work first defines the fundamental physical processes underlying scintillation and governing the primary scintillation characteristics of light output, decay time, emission spectrum, and radiation hardness. The book then discusses the complicated mechanisms of energy conversion and transformation in inorganic scintillators. The section on the role of defects in energy transfer and scintillation efficiency will be of special interest. Throughout, the author does not offer complicated derivations of equations but, instead, presents useful equations with practical results.
Particle Physics Reference Library
Author: Christian W. Fabjan
Publisher: Springer Nature
ISBN: 3030353184
Category : Heavy ions
Languages : en
Pages : 1083
Book Description
This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
Publisher: Springer Nature
ISBN: 3030353184
Category : Heavy ions
Languages : en
Pages : 1083
Book Description
This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
Engineering of Scintillation Materials and Radiation Technologies
Author: Mikhail Korzhik
Publisher: Springer Nature
ISBN: 3030219704
Category : Science
Languages : en
Pages : 319
Book Description
This proceedings book presents dual approaches to examining new theoretical models and their applicability in the search for new scintillation materials and, ultimately, the development of industrial technologies. The ISMART conferences bring together the radiation detector community, from fundamental research scientists to applied physics experts, engineers, and experts on the implementation of advanced solutions. This scientific forum builds a bridge between the different parts of the community and is the basis for multidisciplinary, cooperative research and development efforts. The main goals of the conference series are to review the latest results in scintillator development, from theory to applications, and to arrive at a deeper understanding of fundamental processes, as well as to discover components for the production of new generations of scintillation materials. The book highlights recent findings and hypotheses, key advances, as well as exotic detector designs and solutions, and includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, as well as the development and characterization of ionizing radiation detection equipment. It also touches on the increased demand for cryogenic scintillators, the renaissance of garnet materials for scintillator applications, nano-structuring in scintillator development, trends in and applications for security, and exploration of hydrocarbons and ecological monitoring.
Publisher: Springer Nature
ISBN: 3030219704
Category : Science
Languages : en
Pages : 319
Book Description
This proceedings book presents dual approaches to examining new theoretical models and their applicability in the search for new scintillation materials and, ultimately, the development of industrial technologies. The ISMART conferences bring together the radiation detector community, from fundamental research scientists to applied physics experts, engineers, and experts on the implementation of advanced solutions. This scientific forum builds a bridge between the different parts of the community and is the basis for multidisciplinary, cooperative research and development efforts. The main goals of the conference series are to review the latest results in scintillator development, from theory to applications, and to arrive at a deeper understanding of fundamental processes, as well as to discover components for the production of new generations of scintillation materials. The book highlights recent findings and hypotheses, key advances, as well as exotic detector designs and solutions, and includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, as well as the development and characterization of ionizing radiation detection equipment. It also touches on the increased demand for cryogenic scintillators, the renaissance of garnet materials for scintillator applications, nano-structuring in scintillator development, trends in and applications for security, and exploration of hydrocarbons and ecological monitoring.
Engineering of Scintillation Materials and Radiation Technologies
Author: Mikhail Korzhik
Publisher: Springer
ISBN: 3319684655
Category : Science
Languages : en
Pages : 346
Book Description
This volume provides a broad overview of the latest achievements in scintillator development, from theory to applications, and aiming for a deeper understanding of fundamental processes, as well as the discovery and availability of components for the production of new generations of scintillation materials. It includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, and development and characterization of ionizing radiation detection equipment. The book also touches upon the increased demand for cryogenic scintillators, the renaissance of garnet materials for scintillator applications, nano-structuring in scintillator development, development and applications for security, and exploration of hydrocarbons and ecological monitoring.
Publisher: Springer
ISBN: 3319684655
Category : Science
Languages : en
Pages : 346
Book Description
This volume provides a broad overview of the latest achievements in scintillator development, from theory to applications, and aiming for a deeper understanding of fundamental processes, as well as the discovery and availability of components for the production of new generations of scintillation materials. It includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, and development and characterization of ionizing radiation detection equipment. The book also touches upon the increased demand for cryogenic scintillators, the renaissance of garnet materials for scintillator applications, nano-structuring in scintillator development, development and applications for security, and exploration of hydrocarbons and ecological monitoring.
Scintillation Dosimetry
Author: Sam Beddar
Publisher: CRC Press
ISBN: 1482209004
Category : Medical
Languages : en
Pages : 424
Book Description
Scintillation Dosimetry delivers a comprehensive introduction to plastic scintillation dosimetry, covering everything from basic radiation dosimetry concepts to plastic scintillating fiber optics. Comprised of chapters authored by leading experts in the medical physics community, the book: Discusses a broad range of technical implementations, from point source dosimetry scaling to 3D-volumetric and 4D-scintillation dosimetry Addresses a wide scope of clinical applications, from machine quality assurance to small-field and in vivo dosimetry Examines related optical techniques, such as optically stimulated luminescence (OSL) or Čerenkov luminescence Thus, Scintillation Dosimetry provides an authoritative reference for detailed, state-of-the-art information on plastic scintillation dosimetry and its use in the field of radiation dosimetry.
Publisher: CRC Press
ISBN: 1482209004
Category : Medical
Languages : en
Pages : 424
Book Description
Scintillation Dosimetry delivers a comprehensive introduction to plastic scintillation dosimetry, covering everything from basic radiation dosimetry concepts to plastic scintillating fiber optics. Comprised of chapters authored by leading experts in the medical physics community, the book: Discusses a broad range of technical implementations, from point source dosimetry scaling to 3D-volumetric and 4D-scintillation dosimetry Addresses a wide scope of clinical applications, from machine quality assurance to small-field and in vivo dosimetry Examines related optical techniques, such as optically stimulated luminescence (OSL) or Čerenkov luminescence Thus, Scintillation Dosimetry provides an authoritative reference for detailed, state-of-the-art information on plastic scintillation dosimetry and its use in the field of radiation dosimetry.
Physical Processes in Inorganic Scintillators
Author: Piotr A. Rodnyi
Publisher: CRC Press
ISBN: 042960629X
Category : Science
Languages : en
Pages : 246
Book Description
During the last ten to fifteen years, researchers have made considerable progress in the study of inorganic scintillators. New scintillation materials have been investigated, novel scintillation mechanisms have been discovered, and additional scintillator applications have appeared. Demand continues for new and improved scintillation materials for a variety of applications including nuclear and high energy physics, astrophysics, medical imaging, geophysical exploration, radiation detection, and many other fields. However, until now there have been no books available that address in detail the complex scintillation processes associated with these new developments. Now, a world leader in the theory and applications of scintillation processes integrates the latest scientific advances of scintillation into a new work, Physical Processes in Inorganic Scintillators. Written by distinguished researcher Piotr Rodnyi, this volume explores this challenging subject, explains the complexities of scintillation from a modern point of view, and illuminates the way to the development of better scintillation materials. This unique work first defines the fundamental physical processes underlying scintillation and governing the primary scintillation characteristics of light output, decay time, emission spectrum, and radiation hardness. The book then discusses the complicated mechanisms of energy conversion and transformation in inorganic scintillators. The section on the role of defects in energy transfer and scintillation efficiency will be of special interest. Throughout, the author does not offer complicated derivations of equations but, instead, presents useful equations with practical results.
Publisher: CRC Press
ISBN: 042960629X
Category : Science
Languages : en
Pages : 246
Book Description
During the last ten to fifteen years, researchers have made considerable progress in the study of inorganic scintillators. New scintillation materials have been investigated, novel scintillation mechanisms have been discovered, and additional scintillator applications have appeared. Demand continues for new and improved scintillation materials for a variety of applications including nuclear and high energy physics, astrophysics, medical imaging, geophysical exploration, radiation detection, and many other fields. However, until now there have been no books available that address in detail the complex scintillation processes associated with these new developments. Now, a world leader in the theory and applications of scintillation processes integrates the latest scientific advances of scintillation into a new work, Physical Processes in Inorganic Scintillators. Written by distinguished researcher Piotr Rodnyi, this volume explores this challenging subject, explains the complexities of scintillation from a modern point of view, and illuminates the way to the development of better scintillation materials. This unique work first defines the fundamental physical processes underlying scintillation and governing the primary scintillation characteristics of light output, decay time, emission spectrum, and radiation hardness. The book then discusses the complicated mechanisms of energy conversion and transformation in inorganic scintillators. The section on the role of defects in energy transfer and scintillation efficiency will be of special interest. Throughout, the author does not offer complicated derivations of equations but, instead, presents useful equations with practical results.
Handbook of Particle Detection and Imaging
Author: Claus Grupen
Publisher: Springer Science & Business Media
ISBN: 3642132715
Category : Science
Languages : en
Pages : 1251
Book Description
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
Publisher: Springer Science & Business Media
ISBN: 3642132715
Category : Science
Languages : en
Pages : 1251
Book Description
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
The Theory and Practice of Scintillation Counting
Author: J. B. Birks
Publisher: Elsevier
ISBN: 1483156060
Category : Technology & Engineering
Languages : en
Pages : 685
Book Description
The Theory and Practice of Scintillation Counting is a comprehensive account of the theory and practice of scintillation counting. This text covers the study of the scintillation process, which is concerned with the interactions of radiation and matter; the design of the scintillation counter; and the wide range of applications of scintillation counters in pure and applied science. The book is easy to read despite the complex nature of the subject it attempts to discuss. It is organized such that the first five chapters illustrate the fundamental concepts of scintillation counting. Chapters 6 to 10 detail the properties and applications of organic scintillators, while the next four chapters discuss inorganic scintillators. The last two chapters provide a review of some outstanding problems and a postscript. Nuclear physicists, radiation technologists, and postgraduate students of nuclear physics will find the book a good reference material.
Publisher: Elsevier
ISBN: 1483156060
Category : Technology & Engineering
Languages : en
Pages : 685
Book Description
The Theory and Practice of Scintillation Counting is a comprehensive account of the theory and practice of scintillation counting. This text covers the study of the scintillation process, which is concerned with the interactions of radiation and matter; the design of the scintillation counter; and the wide range of applications of scintillation counters in pure and applied science. The book is easy to read despite the complex nature of the subject it attempts to discuss. It is organized such that the first five chapters illustrate the fundamental concepts of scintillation counting. Chapters 6 to 10 detail the properties and applications of organic scintillators, while the next four chapters discuss inorganic scintillators. The last two chapters provide a review of some outstanding problems and a postscript. Nuclear physicists, radiation technologists, and postgraduate students of nuclear physics will find the book a good reference material.
Particle Detectors
Author: Hermann Kolanoski
Publisher: Oxford University Press
ISBN: 0191899232
Category : Science
Languages : en
Pages : 949
Book Description
This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.
Publisher: Oxford University Press
ISBN: 0191899232
Category : Science
Languages : en
Pages : 949
Book Description
This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.