Author: Charles Parsons
Publisher: Harvard University Press
ISBN: 0674419499
Category : Philosophy
Languages : en
Pages : 365
Book Description
In these selected essays, Charles Parsons surveys the contributions of philosophers and mathematicians who shaped the philosophy of mathematics over the past century: Brouwer, Hilbert, Bernays, Weyl, Gödel, Russell, Quine, Putnam, Wang, and Tait.
Philosophy of Mathematics in the Twentieth Century
Author: Charles Parsons
Publisher: Harvard University Press
ISBN: 0674419499
Category : Philosophy
Languages : en
Pages : 365
Book Description
In these selected essays, Charles Parsons surveys the contributions of philosophers and mathematicians who shaped the philosophy of mathematics over the past century: Brouwer, Hilbert, Bernays, Weyl, Gödel, Russell, Quine, Putnam, Wang, and Tait.
Publisher: Harvard University Press
ISBN: 0674419499
Category : Philosophy
Languages : en
Pages : 365
Book Description
In these selected essays, Charles Parsons surveys the contributions of philosophers and mathematicians who shaped the philosophy of mathematics over the past century: Brouwer, Hilbert, Bernays, Weyl, Gödel, Russell, Quine, Putnam, Wang, and Tait.
Philosophy of Science, Logic and Mathematics in the Twentieth Century
Author: Stuart Shanker
Publisher: Psychology Press
ISBN: 9780415308816
Category : Mathematics
Languages : en
Pages : 508
Book Description
First Published in 2003. Routledge is an imprint of Taylor & Francis, an informa company.
Publisher: Psychology Press
ISBN: 9780415308816
Category : Mathematics
Languages : en
Pages : 508
Book Description
First Published in 2003. Routledge is an imprint of Taylor & Francis, an informa company.
Philosophy of Mathematics
Author: David Bostock
Publisher: John Wiley & Sons
ISBN: 1405189924
Category : Mathematics
Languages : en
Pages : 345
Book Description
Philosophy of Mathematics: An Introduction provides a critical analysis of the major philosophical issues and viewpoints in the concepts and methods of mathematics - from antiquity to the modern era. Offers beginning readers a critical appraisal of philosophical viewpoints throughout history Gives a separate chapter to predicativism, which is often (but wrongly) treated as if it were a part of logicism Provides readers with a non-partisan discussion until the final chapter, which gives the author's personal opinion on where the truth lies Designed to be accessible to both undergraduates and graduate students, and at the same time to be of interest to professionals
Publisher: John Wiley & Sons
ISBN: 1405189924
Category : Mathematics
Languages : en
Pages : 345
Book Description
Philosophy of Mathematics: An Introduction provides a critical analysis of the major philosophical issues and viewpoints in the concepts and methods of mathematics - from antiquity to the modern era. Offers beginning readers a critical appraisal of philosophical viewpoints throughout history Gives a separate chapter to predicativism, which is often (but wrongly) treated as if it were a part of logicism Provides readers with a non-partisan discussion until the final chapter, which gives the author's personal opinion on where the truth lies Designed to be accessible to both undergraduates and graduate students, and at the same time to be of interest to professionals
Mathematics in Twentieth-Century Literature & Art
Author: Robert Tubbs
Publisher: Johns Hopkins University Press+ORM
ISBN: 1421414023
Category : Mathematics
Languages : en
Pages : 276
Book Description
The author of What Is a Number? examines the relationship between mathematics and art and literature of the 20th century. During the twentieth century, many artists and writers turned to abstract mathematical ideas to help them realize their aesthetic ambitions. Man Ray, Marcel Duchamp, and, perhaps most famously, Piet Mondrian used principles of mathematics in their work. Was it coincidence, or were these artists following their instincts, which were ruled by mathematical underpinnings, such as optimal solutions for filling a space? If math exists within visual art, can it be found within literary pursuits? In short, just what is the relationship between mathematics and the creative arts? In this exploration of mathematical ideas in art and literature, Robert Tubbs argues that the links are much stronger than previously imagined and exceed both coincidence and commonality of purpose. Not only does he argue that mathematical ideas guided the aesthetic visions of many twentieth-century artists and writers, Tubbs further asserts that artists and writers used math in their creative processes even though they seemed to have no affinity for mathematical thinking. In the end, Tubbs makes the case that art can be better appreciated when the math that inspired it is better understood. An insightful tour of the great masters of the last century and an argument that challenges long-held paradigms, this book will appeal to mathematicians, humanists, and artists, as well as instructors teaching the connections among math, literature, and art. “Though the content of Tubbs’s book is challenging, it is also accessible and should interest many on both sides of the perceived divide between mathematics and the arts.” —Choice
Publisher: Johns Hopkins University Press+ORM
ISBN: 1421414023
Category : Mathematics
Languages : en
Pages : 276
Book Description
The author of What Is a Number? examines the relationship between mathematics and art and literature of the 20th century. During the twentieth century, many artists and writers turned to abstract mathematical ideas to help them realize their aesthetic ambitions. Man Ray, Marcel Duchamp, and, perhaps most famously, Piet Mondrian used principles of mathematics in their work. Was it coincidence, or were these artists following their instincts, which were ruled by mathematical underpinnings, such as optimal solutions for filling a space? If math exists within visual art, can it be found within literary pursuits? In short, just what is the relationship between mathematics and the creative arts? In this exploration of mathematical ideas in art and literature, Robert Tubbs argues that the links are much stronger than previously imagined and exceed both coincidence and commonality of purpose. Not only does he argue that mathematical ideas guided the aesthetic visions of many twentieth-century artists and writers, Tubbs further asserts that artists and writers used math in their creative processes even though they seemed to have no affinity for mathematical thinking. In the end, Tubbs makes the case that art can be better appreciated when the math that inspired it is better understood. An insightful tour of the great masters of the last century and an argument that challenges long-held paradigms, this book will appeal to mathematicians, humanists, and artists, as well as instructors teaching the connections among math, literature, and art. “Though the content of Tubbs’s book is challenging, it is also accessible and should interest many on both sides of the perceived divide between mathematics and the arts.” —Choice
From Mathematics to Philosophy (Routledge Revivals)
Author: Hao Wang
Publisher: Routledge
ISBN: 1134884338
Category : Philosophy
Languages : en
Pages : 445
Book Description
First published in 1974. Despite the tendency of contemporary analytic philosophy to put logic and mathematics at a central position, the author argues it failed to appreciate or account for their rich content. Through discussions of such mathematical concepts as number, the continuum, set, proof and mechanical procedure, the author provides an introduction to the philosophy of mathematics and an internal criticism of the then current academic philosophy. The material presented is also an illustration of a new, more general method of approach called substantial factualism which the author asserts allows for the development of a more comprehensive philosophical position by not trivialising or distorting substantial facts of human knowledge.
Publisher: Routledge
ISBN: 1134884338
Category : Philosophy
Languages : en
Pages : 445
Book Description
First published in 1974. Despite the tendency of contemporary analytic philosophy to put logic and mathematics at a central position, the author argues it failed to appreciate or account for their rich content. Through discussions of such mathematical concepts as number, the continuum, set, proof and mechanical procedure, the author provides an introduction to the philosophy of mathematics and an internal criticism of the then current academic philosophy. The material presented is also an illustration of a new, more general method of approach called substantial factualism which the author asserts allows for the development of a more comprehensive philosophical position by not trivialising or distorting substantial facts of human knowledge.
The Continuous, the Discrete and the Infinitesimal in Philosophy and Mathematics
Author: John L. Bell
Publisher: Springer Nature
ISBN: 3030187071
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled ‘The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,’ reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,’ discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincaré, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal.
Publisher: Springer Nature
ISBN: 3030187071
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book explores and articulates the concepts of the continuous and the infinitesimal from two points of view: the philosophical and the mathematical. The first section covers the history of these ideas in philosophy. Chapter one, entitled ‘The continuous and the discrete in Ancient Greece, the Orient and the European Middle Ages,’ reviews the work of Plato, Aristotle, Epicurus, and other Ancient Greeks; the elements of early Chinese, Indian and Islamic thought; and early Europeans including Henry of Harclay, Nicholas of Autrecourt, Duns Scotus, William of Ockham, Thomas Bradwardine and Nicolas Oreme. The second chapter of the book covers European thinkers of the sixteenth and seventeenth centuries: Galileo, Newton, Leibniz, Descartes, Arnauld, Fermat, and more. Chapter three, 'The age of continuity,’ discusses eighteenth century mathematicians including Euler and Carnot, and philosophers, among them Hume, Kant and Hegel. Examining the nineteenth and early twentieth centuries, the fourth chapter describes the reduction of the continuous to the discrete, citing the contributions of Bolzano, Cauchy and Reimann. Part one of the book concludes with a chapter on divergent conceptions of the continuum, with the work of nineteenth and early twentieth century philosophers and mathematicians, including Veronese, Poincaré, Brouwer, and Weyl. Part two of this book covers contemporary mathematics, discussing topology and manifolds, categories, and functors, Grothendieck topologies, sheaves, and elementary topoi. Among the theories presented in detail are non-standard analysis, constructive and intuitionist analysis, and smooth infinitesimal analysis/synthetic differential geometry. No other book so thoroughly covers the history and development of the concepts of the continuous and the infinitesimal.
Philosophy of Mathematics
Author: Paul Benacerraf
Publisher: Cambridge University Press
ISBN: 1107268133
Category : Science
Languages : en
Pages : 604
Book Description
The twentieth century has witnessed an unprecedented 'crisis in the foundations of mathematics', featuring a world-famous paradox (Russell's Paradox), a challenge to 'classical' mathematics from a world-famous mathematician (the 'mathematical intuitionism' of Brouwer), a new foundational school (Hilbert's Formalism), and the profound incompleteness results of Kurt Gödel. In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Gödel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.
Publisher: Cambridge University Press
ISBN: 1107268133
Category : Science
Languages : en
Pages : 604
Book Description
The twentieth century has witnessed an unprecedented 'crisis in the foundations of mathematics', featuring a world-famous paradox (Russell's Paradox), a challenge to 'classical' mathematics from a world-famous mathematician (the 'mathematical intuitionism' of Brouwer), a new foundational school (Hilbert's Formalism), and the profound incompleteness results of Kurt Gödel. In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Gödel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.
Routledge History of Philosophy Volume IX
Author: S. G. Shanker
Publisher: Routledge
ISBN: 1134393377
Category : Philosophy
Languages : en
Pages : 500
Book Description
Volume 9 of the Routledge History of Philosophy surveys ten key topics in the philosophy of science, logic and mathematics in the twentieth century. Each of the essays is written by one of the world's leading experts in that field. Among the topics covered are the philosophy of logic, of mathematics and of Gottlob Frege; Ludwig Wittgenstein's Tractatus; a survey of logical positivism; the philosophy of physics and of science; probability theory, cybernetics and an essay on the mechanist/vitalist debates. The volume also contains a helpful chronology to the major scientific and philosophical events in the twentieth century. It also provides an extensive glossary of technical terms in the notes on major figures in these fields.
Publisher: Routledge
ISBN: 1134393377
Category : Philosophy
Languages : en
Pages : 500
Book Description
Volume 9 of the Routledge History of Philosophy surveys ten key topics in the philosophy of science, logic and mathematics in the twentieth century. Each of the essays is written by one of the world's leading experts in that field. Among the topics covered are the philosophy of logic, of mathematics and of Gottlob Frege; Ludwig Wittgenstein's Tractatus; a survey of logical positivism; the philosophy of physics and of science; probability theory, cybernetics and an essay on the mechanist/vitalist debates. The volume also contains a helpful chronology to the major scientific and philosophical events in the twentieth century. It also provides an extensive glossary of technical terms in the notes on major figures in these fields.
An Introduction to the Philosophy of Mathematics
Author: Mark Colyvan
Publisher: Cambridge University Press
ISBN: 0521826020
Category : Mathematics
Languages : en
Pages : 199
Book Description
A fascinating journey through intriguing mathematical and philosophical territory - a lively introduction to this contemporary topic.
Publisher: Cambridge University Press
ISBN: 0521826020
Category : Mathematics
Languages : en
Pages : 199
Book Description
A fascinating journey through intriguing mathematical and philosophical territory - a lively introduction to this contemporary topic.
Thinking about Mathematics
Author: Stewart Shapiro
Publisher: OUP Oxford
ISBN: 0192893068
Category : Philosophy
Languages : en
Pages : 323
Book Description
Thinking about Mathematics covers the range of philosophical issues and positions concerning mathematics. The text describes the questions about mathematics that motivated philosophers throughout history and covers historical figures such as Plato, Aristotle, Kant, and Mill. It also presents the major positions and arguments concerning mathematics throughout the twentieth century, bringing the reader up to the present positions and battle lines.
Publisher: OUP Oxford
ISBN: 0192893068
Category : Philosophy
Languages : en
Pages : 323
Book Description
Thinking about Mathematics covers the range of philosophical issues and positions concerning mathematics. The text describes the questions about mathematics that motivated philosophers throughout history and covers historical figures such as Plato, Aristotle, Kant, and Mill. It also presents the major positions and arguments concerning mathematics throughout the twentieth century, bringing the reader up to the present positions and battle lines.