Perturbation Methods, Bifurcation Theory and Computer Algebra

Perturbation Methods, Bifurcation Theory and Computer Algebra PDF Author: Richard H. Rand
Publisher: Springer Science & Business Media
ISBN: 1461210607
Category : Mathematics
Languages : en
Pages : 254

Get Book Here

Book Description
Perturbation methods have always been an important tool for treating nonlinear differential equations. Now the drudgery associated with them has been eliminated! This book offers computer algebra (MACSYMA) programs which implement the most popular perturbation methods. Not only does this avoid the errors associated with hand computation, but the increase in efficiency permits more complicated problems to be tackled. This book is useful both for the beginner learning perturbation methods for the first time, as well as for the researcher. Methods covered include: Lindstedt's method, center manifolds, normal forms, two variable expansion method (method of multiple scales), averaging, Lie transforms and Liapunov-Schmidt reduction. For each method the book includes an introduction and some example problems solved both by hand and by machine. The examples feature common bifurcations such as the pitchfork and the Hopf. The MACSYMA code for each method is given and suggested exercises are provided at the end of each Chapter. An Appendix offers a brief introduction to MACSYMA.

Perturbation Methods, Bifurcation Theory and Computer Algebra

Perturbation Methods, Bifurcation Theory and Computer Algebra PDF Author: Richard H. Rand
Publisher: Springer Science & Business Media
ISBN: 1461210607
Category : Mathematics
Languages : en
Pages : 254

Get Book Here

Book Description
Perturbation methods have always been an important tool for treating nonlinear differential equations. Now the drudgery associated with them has been eliminated! This book offers computer algebra (MACSYMA) programs which implement the most popular perturbation methods. Not only does this avoid the errors associated with hand computation, but the increase in efficiency permits more complicated problems to be tackled. This book is useful both for the beginner learning perturbation methods for the first time, as well as for the researcher. Methods covered include: Lindstedt's method, center manifolds, normal forms, two variable expansion method (method of multiple scales), averaging, Lie transforms and Liapunov-Schmidt reduction. For each method the book includes an introduction and some example problems solved both by hand and by machine. The examples feature common bifurcations such as the pitchfork and the Hopf. The MACSYMA code for each method is given and suggested exercises are provided at the end of each Chapter. An Appendix offers a brief introduction to MACSYMA.

Stability and Transition in Shear Flows

Stability and Transition in Shear Flows PDF Author: Peter J. Schmid
Publisher: Springer Science & Business Media
ISBN: 1461301858
Category : Science
Languages : en
Pages : 561

Get Book Here

Book Description
A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.

Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations

Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations PDF Author: P. Constantin
Publisher: Springer Science & Business Media
ISBN: 1461235065
Category : Mathematics
Languages : en
Pages : 133

Get Book Here

Book Description
This work was initiated in the summer of 1985 while all of the authors were at the Center of Nonlinear Studies of the Los Alamos National Laboratory; it was then continued and polished while the authors were at Indiana Univer sity, at the University of Paris-Sud (Orsay), and again at Los Alamos in 1986 and 1987. Our aim was to present a direct geometric approach in the theory of inertial manifolds (global analogs of the unstable-center manifolds) for dissipative partial differential equations. This approach, based on Cauchy integral mani folds for which the solutions of the partial differential equations are the generating characteristic curves, has the advantage that it provides a sound basis for numerical Galerkin schemes obtained by approximating the inertial manifold. The work is self-contained and the prerequisites are at the level of a graduate student. The theoretical part of the work is developed in Chapters 2-14, while in Chapters 15-19 we apply the theory to several remarkable partial differ ential equations.

Inverse Problems for Partial Differential Equations

Inverse Problems for Partial Differential Equations PDF Author: Victor Isakov
Publisher: Springer Science & Business Media
ISBN: 1489900306
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
A comprehensive description of the current theoretical and numerical aspects of inverse problems in partial differential equations. Applications include recovery of inclusions from anomalies of their gravity fields, reconstruction of the interior of the human body from exterior electrical, ultrasonic, and magnetic measurement. By presenting the data in a readable and informative manner, the book introduces both scientific and engineering researchers as well as graduate students to the significant work done in this area in recent years, relating it to broader themes in mathematical analysis.

Acoustic and Electromagnetic Equations

Acoustic and Electromagnetic Equations PDF Author: Jean-Claude Nedelec
Publisher: Springer Science & Business Media
ISBN: 1475743939
Category : Mathematics
Languages : en
Pages : 328

Get Book Here

Book Description
Acoustic and electromagnetic waves underlie a vast range of modern technology from sonar, radio, and television to microwave heating and electromagnetic compatibility analysis. Mathematical modeling of these waves has undergone considerable growth in recent years, and this timely book, written by a leading international researcher, presents the research in a careful and complete way.

Topology, Geometry, and Gauge Fields

Topology, Geometry, and Gauge Fields PDF Author: Gregory L. Naber
Publisher: Springer Science & Business Media
ISBN: 1475768508
Category : Mathematics
Languages : en
Pages : 453

Get Book Here

Book Description
A study of topology and geometry, beginning with a comprehensible account of the extraordinary and rather mysterious impact of mathematical physics, and especially gauge theory, on the study of the geometry and topology of manifolds. The focus of the book is the Yang-Mills-Higgs field and some considerable effort is expended to make clear its origin and significance in physics. Much of the mathematics developed here to study these fields is standard, but the treatment always keeps one eye on the physics and sacrifices generality in favor of clarity. The author brings readers up the level of physics and mathematics needed to conclude with a brief discussion of the Seiberg-Witten invariants. A large number of exercises are included to encourage active participation on the part of the reader.

Mathematical Theory of Incompressible Nonviscous Fluids

Mathematical Theory of Incompressible Nonviscous Fluids PDF Author: Carlo Marchioro
Publisher: Springer Science & Business Media
ISBN: 1461242843
Category : Mathematics
Languages : en
Pages : 295

Get Book Here

Book Description
Fluid dynamics is an ancient science incredibly alive today. Modern technol ogy and new needs require a deeper knowledge of the behavior of real fluids, and new discoveries or steps forward pose, quite often, challenging and diffi cult new mathematical {::oblems. In this framework, a special role is played by incompressible nonviscous (sometimes called perfect) flows. This is a mathematical model consisting essentially of an evolution equation (the Euler equation) for the velocity field of fluids. Such an equation, which is nothing other than the Newton laws plus some additional structural hypo theses, was discovered by Euler in 1755, and although it is more than two centuries old, many fundamental questions concerning its solutions are still open. In particular, it is not known whether the solutions, for reasonably general initial conditions, develop singularities in a finite time, and very little is known about the long-term behavior of smooth solutions. These and other basic problems are still open, and this is one of the reasons why the mathe matical theory of perfect flows is far from being completed. Incompressible flows have been attached, by many distinguished mathe maticians, with a large variety of mathematical techniques so that, today, this field constitutes a very rich and stimulating part of applied mathematics.

The Mathematical Theory of Dilute Gases

The Mathematical Theory of Dilute Gases PDF Author: Carlo Cercignani
Publisher: Springer Science & Business Media
ISBN: 1441985247
Category : Science
Languages : en
Pages : 357

Get Book Here

Book Description
The idea for this book was conceived by the authors some time in 1988, and a first outline of the manuscript was drawn up during a summer school on mathematical physics held in Ravello in September 1988, where all three of us were present as lecturers or organizers. The project was in some sense inherited from our friend Marvin Shinbrot, who had planned a book about recent progress for the Boltzmann equation, but, due to his untimely death in 1987, never got to do it. When we drew up the first outline, we could not anticipate how long the actual writing would stretch out. Our ambitions were high: We wanted to cover the modern mathematical theory of the Boltzmann equation, with rigorous proofs, in a complete and readable volume. As the years progressed, we withdrew to some degree from this first ambition- there was just too much material, too scattered, sometimes incomplete, sometimes not rigor ous enough. However, in the writing process itself, the need for the book became ever more apparent. The last twenty years have seen an amazing number of significant results in the field, many of them published in incom plete form, sometimes in obscure places, and sometimes without technical details. We made it our objective to collect these results, classify them, and present them as best we could. The choice of topics remains, of course, subjective.

Computers and Mathematics

Computers and Mathematics PDF Author: Erich Kaltofen
Publisher: Springer Science & Business Media
ISBN: 1461396476
Category : Computers
Languages : en
Pages : 336

Get Book Here

Book Description
Advances in computer technology have had a tremendous impact on mathematics in the last two decades. In June of 1989, an international conference was held at MIT, bringing together mathematicians and computer scientists, to survey the work that has been done in computational mathematics, to report recent results in this field, and to discuss research directions as well as educational issues. This book presents a fascinating collection of contributions on topics ranging from computational algebra, and parallel computing, to mathematics education. Mathematicians interested in the computational aspects of their discipline as well as computer scientists interested in mathematical applications will enjoy the integrative view provided by this book.

Mathematical Problems in Image Processing

Mathematical Problems in Image Processing PDF Author: Gilles Aubert
Publisher: Springer Science & Business Media
ISBN: 0387445889
Category : Mathematics
Languages : en
Pages : 400

Get Book Here

Book Description
The updated 2nd edition of this book presents a variety of image analysis applications, reviews their precise mathematics and shows how to discretize them. For the mathematical community, the book shows the contribution of mathematics to this domain, and highlights unsolved theoretical questions. For the computer vision community, it presents a clear, self-contained and global overview of the mathematics involved in image procesing problems. The second edition offers a review of progress in image processing applications covered by the PDE framework, and updates the existing material. The book also provides programming tools for creating simulations with minimal effort.