Performance-Based Moisture Susceptibility Evaluation of Warm Mix Asphalt Concretes Through Laboratory Tests and Digital Imaging Analyses

Performance-Based Moisture Susceptibility Evaluation of Warm Mix Asphalt Concretes Through Laboratory Tests and Digital Imaging Analyses PDF Author: Jong-Sub Lee
Publisher:
ISBN:
Category :
Languages : en
Pages : 190

Get Book Here

Book Description


Evaluation of the Moisture Susceptibility of WMA Technologies

Evaluation of the Moisture Susceptibility of WMA Technologies PDF Author: Amy Epps Martin
Publisher: Transportation Research Board
ISBN: 030928368X
Category : Technology & Engineering
Languages : en
Pages : 109

Get Book Here

Book Description
"TRB's National Cooperative Highway Research Program (NCHRP) Report 763: Evaluation of the Moisture Susceptibility of WMA Technologies presents proposed guidelines for identifying potential moisture susceptibility in warm mix asphalt (WMA). The report also suggests potential revisions to the Appendix to AASHTO R 35, "Special Mixture Design Considerations and Methods for WMA" as a means to implement the guidelines."--publisher's description

Evaluation of Moisture Susceptibility of Warm Mix Asphalt

Evaluation of Moisture Susceptibility of Warm Mix Asphalt PDF Author: Maria Lorena Garcia Cucalon
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Economic, environmental and engineering benefits promote the rapid implementation of WMA technologies. However, concerns remain based on changes in the production process that may lead to moisture susceptibility in the early life as compared to HMA. To evaluate WMA moisture susceptibility during this critical period, standard laboratory tests were used for three field projects each with an HMA control mixtures and multiple WMA mixtures. Different specimen types were also evaluated to capture differences in mix design, quality control/quality assurance, and field performance. Specimens were evaluated for moisture susceptibility by Indirect Tensile (IDT) Strength, Resilient Modulus (MR) and Hamburg Wheel-Track Testing (HWTT). Specimens for IDT and MR were tested dry and then tested wet after conditioning as described in AASHTO T283 with one freeze-thaw cycle. HWTT was used to assess both moisture susceptibility and rutting potential under repeated loads in the presence of water at elevated temperatures (i.e., 122°F [50°C]), and the output parameters used for evaluation were the calculated Stripping Inflection Point (SIP) and the rut depth at 5000 load cycles. Based on the results of the laboratory tests performed on PMFC cores acquired at construction and with time, WMA during its early life exhibited inferior moisture resistance when compared to HMA. However, with time, specifically after one summer, the dry and wet properties of WMA became equivalent to those of HMA. For WMA constructed in the fall, the results from this study suggest that the inclusion of recycled asphalt pavement (RAP) or an anti-stripping agent may alleviate possible moisture susceptibility issues in the early life during wet, winter weather conditions. While some laboratory test results demonstrated that WMA is more moisture susceptible than HMA, field performance reported to date from the three projects used in this study shows no evidence of moisture damage. Therefore the search for a laboratory test to screen mixtures for moisture susceptibility continues. An alternative approach, applying Griffith crack growth theory and utilizing IDT, MR and air voids% the adhesive bond energy of asphalt mixtures was calculated for Texas field project. This value holds promise for characterizing performance of asphalt mixtures by considering basic properties and grouping into one representative value. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/149392

Evaluating Moisture Susceptibility of Asphalt Mixes

Evaluating Moisture Susceptibility of Asphalt Mixes PDF Author: Elizabeth Rae Hunter
Publisher:
ISBN:
Category : Frost
Languages : en
Pages : 164

Get Book Here

Book Description
This research project utilized laboratory evaluations to study effects of freeze-thaw cycling on the tensile strength of eight Hot Mix Asphalt mixtures and to determine if the Georgia Loaded Wheel Tester could be utilized to measure moisture susceptibility of Hot Mix Asphalt mixtures. The evaluation involved eight Hot Mix Asphalt mixtures from combinations of two aggregate types and four asphalt-additive-aging possibilities. Laboratory testing was accomplished in the first phase with the production of 2.5 by 4 inch cores that were freeze-thaw cycled and tested for their indirect tensile strength following Wyoming modified AASHTO T283. The second phase was accomplished using 3 by 6 inch cores that were conditioned and tested for rutting using the Georgia Loaded Wheel Tester. Finally, a statistical analysis was performed to determine if performance of the various mixtures was significantly different in groups of asphalt types and to determine if the Georgia Loaded Wheel Tester was a viable measurement tool for moisture susceptibility.

Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements—Mairepav9

Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements—Mairepav9 PDF Author: Christiane Raab
Publisher: Springer Nature
ISBN: 3030486796
Category : Technology & Engineering
Languages : en
Pages : 955

Get Book Here

Book Description
This book gathers the proceedings of an international conference held at Empa (Swiss Federal Laboratories for materials Science and Technology) in Dübendorf, Switzerland, in July 2020. The conference series was established by the International Society of Maintenance and Rehabilitation of Transport Infrastructure (iSMARTi) for promoting and discussing state-of-the-art design, maintenance, rehabilitation and management of pavements. The inaugural conference was held at Mackenzie Presbyterian University in Sao Paulo, Brazil, in 2000. The series has steadily grown over the past 20 years, with installments hosted in various countries all over the world. The respective contributions share the latest insights from research and practice in the maintenance and rehabilitation of pavements, and discuss advanced materials, technologies and solutions for achieving an even more sustainable and environmentally friendly infrastructure.

Investigation of Moisture Susceptibility of Warm Mix Asphalt (WMA) Mixes Through Laboratory Mechanical Testing

Investigation of Moisture Susceptibility of Warm Mix Asphalt (WMA) Mixes Through Laboratory Mechanical Testing PDF Author: Wenyi Gong
Publisher:
ISBN:
Category :
Languages : en
Pages : 148

Get Book Here

Book Description
Abstract: The presence of moisture can lead to serious damage in Hot Mix Asphalt mixes and failures of HMA pavements. This is of an even greater concern for Warm Mix Asphalt (WMA) due to the use of much lower production temperatures which may not be high enough to completely dry the aggregates. In this Maine DOT study, the use of fracture energy parameters was evaluated to determine the influence of incomplete drying of mixes on their mechanical properties. Fracture energy based parameters (ER: energy ratio; RER: ratio of energy ratio) were determined from the following indirect tensile testing on mixes with fully and partially dried aggregates, some of which were subjected to moisture conditioning: Resilient modulus (Mr), creep compliance, and indirect tensile strength (ITS) strength at 5°C. The results indicate that: i. resilient modulus, creep compliance, and indirect tensile strength were all affected by the presence of moisture in mixes; ii. the trend and degree of influence by moisture for the different mechanical parameters are different; iii. The moisture conditioning process has caused larger decreases in resilient modulus and ITS values than incomplete drying of aggregates; however, the same moisture conditioning process has caused much larger decreases in modulus and ITS in asphalt mixes prepared with incompletely dried aggregates than the counterparts prepared with fully dried aggregates; and iv. fracture energy-based parameters (ER and RER) appear to be more distinctive moisture effect/damage indicators than the other parameters.

Improved Conditioning and Testing Procedures for HMA Moisture Susceptibility

Improved Conditioning and Testing Procedures for HMA Moisture Susceptibility PDF Author: Mansour Solaimanian
Publisher: Transportation Research Board
ISBN: 0309099064
Category : Bituminous materials
Languages : en
Pages : 79

Get Book Here

Book Description
Explores whether combining the environmental conditioning system with the simple performance test would provide a superior procedure for determining the moisture susceptibility of hot-mix asphalt (HMA).

Development of Simple Performance Tests Using Laboratory Test Procedures to Illustrate the Effects of Moisture Damage on Hot Mix Asphalt

Development of Simple Performance Tests Using Laboratory Test Procedures to Illustrate the Effects of Moisture Damage on Hot Mix Asphalt PDF Author: Jason Bausano
Publisher:
ISBN:
Category : Pavements, Asphalt
Languages : en
Pages : 366

Get Book Here

Book Description
It has been extensively documented since the late 1970's that moisture damage occurs in hot mix asphalt (HMA) pavements. A variety of test methods are available that test an HMA's ability to resist moisture sensitivity. There are also some test methods that look at an asphalt binder's moisture susceptibility. The current test method for detecting moisture sensitivity in HMA is American Association of State Highway and Transportation Officials (AASHTO) T283: Resistance of Compacted Bituminous Mixture to Moisture-Induced Damage. Inclusion of this test method in Superpave did not consider the change in specimen size from 100mm to 150mm nor difference in compaction method. The procedures in AASHTO T283 consider the loss of strength due to freeze/thaw cycling and the effects of moisture existing in specimens compared to unconditional specimens. However, mixtures do not experience such a pure phenomenon. Pavements undergo cycling of environmental conditions, but when moisture is present, there is repeated hydraulic loading with the development of pore pressure in mixtures. Thus, AASHTO T283 does not consider the effect of pore pressure, but rather considers a single load effect on environmentally conditioned specimens. This report develops moisture susceptibility procedures which would utilize repeated loading test devices (dynamic modulus or asphalt pavement analyzer) of specimens in saturated conditions and be compared to unconditioned specimens in a dry test environment. In addition to HMA mixture testing, a modified dynamic shear rheometer will be used to determine if an asphalt binder or mastic is moisture susceptible. Moisture susceptible criteria was developed using the dynamic complex modulus, asphalt pavement analyzer, and dynamic shear rheometer. Evaluation of AASHTO T283 for 150mm Superpave Gyrtaory compacted specimens is also detailed in this report along with a new criterion.

Warm-mix Asphalt Study

Warm-mix Asphalt Study PDF Author: David Jones
Publisher:
ISBN:
Category : Pavements, Asphalt concrete
Languages : en
Pages : 136

Get Book Here

Book Description


Water Sensitivity of Asphalt-aggregate Mixes

Water Sensitivity of Asphalt-aggregate Mixes PDF Author: Ronald L. Terrel
Publisher: National Research Council
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 204

Get Book Here

Book Description
The research presented in this report was conducted to identify the important factors influencing the water sensitivity of asphalt paving mixtures, and to develop a test method to evaluate water sensitivity of asphalt concrete mixtures for mix design. The test method was to be performance related. A review of current procedures revealed that no single method was suitable for evaluation and related to field performance. Based on a hypothesis that air voids in the mixture may be the major source and cause of water damage, a test system was developed to evaluate the major factors that influence water sensitivity. The Environmental Conditioning System (ECS) was used to develop a test procedure that includes specimen preparation; measurement of permeability using air, water, or both; vacuum wetting; cycling at various temperatures; and continuous repeated loading while monitoring resilient modulus after each conditioning cycle.