Author: Brojo Kishore Mishra
Publisher: CRC Press
ISBN: 1000711315
Category : Science
Languages : en
Pages : 297
Book Description
This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages. Key features: Addresses the functional frameworks and workflow that are trending in NLP and AI Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.
Natural Language Processing in Artificial Intelligence
Author: Brojo Kishore Mishra
Publisher: CRC Press
ISBN: 1000711315
Category : Science
Languages : en
Pages : 297
Book Description
This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages. Key features: Addresses the functional frameworks and workflow that are trending in NLP and AI Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.
Publisher: CRC Press
ISBN: 1000711315
Category : Science
Languages : en
Pages : 297
Book Description
This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages. Key features: Addresses the functional frameworks and workflow that are trending in NLP and AI Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.
Python Natural Language Processing
Author: Jalaj Thanaki
Publisher: Packt Publishing Ltd
ISBN: 1787285529
Category : Computers
Languages : en
Pages : 476
Book Description
Leverage the power of machine learning and deep learning to extract information from text data About This Book Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Who This Book Is For This book is intended for Python developers who wish to start with natural language processing and want to make their applications smarter by implementing NLP in them. What You Will Learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot, SpaCy, Standford CoreNLP and so on Learn about Features Extraction and Feature selection as part of Features Engineering. Explore the advantages of vectorization in Deep Learning. Get a better understanding of the architecture of a rule-based system. Optimize and fine-tune Supervised and Unsupervised Machine Learning algorithms for NLP problems. Identify Deep Learning techniques for Natural Language Processing and Natural Language Generation problems. In Detail This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. Style and approach This book teaches the readers various aspects of natural language Processing using NLTK. It takes the reader from the basic to advance level in a smooth way.
Publisher: Packt Publishing Ltd
ISBN: 1787285529
Category : Computers
Languages : en
Pages : 476
Book Description
Leverage the power of machine learning and deep learning to extract information from text data About This Book Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Who This Book Is For This book is intended for Python developers who wish to start with natural language processing and want to make their applications smarter by implementing NLP in them. What You Will Learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot, SpaCy, Standford CoreNLP and so on Learn about Features Extraction and Feature selection as part of Features Engineering. Explore the advantages of vectorization in Deep Learning. Get a better understanding of the architecture of a rule-based system. Optimize and fine-tune Supervised and Unsupervised Machine Learning algorithms for NLP problems. Identify Deep Learning techniques for Natural Language Processing and Natural Language Generation problems. In Detail This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. Style and approach This book teaches the readers various aspects of natural language Processing using NLTK. It takes the reader from the basic to advance level in a smooth way.
Artificial Intelligent Techniques for Wireless Communication and Networking
Author: R. Kanthavel
Publisher: John Wiley & Sons
ISBN: 1119821789
Category : Computers
Languages : en
Pages : 388
Book Description
ARTIFICIAL INTELLIGENT TECHNIQUES FOR WIRELESS COMMUNICATION AND NETWORKING The 20 chapters address AI principles and techniques used in wireless communication and networking and outline their benefit, function, and future role in the field. Wireless communication and networking based on AI concepts and techniques are explored in this book, specifically focusing on the current research in the field by highlighting empirical results along with theoretical concepts. The possibility of applying AI mechanisms towards security aspects in the communication domain is elaborated; also explored is the application side of integrated technologies that enhance AI-based innovations, insights, intelligent predictions, cost optimization, inventory management, identification processes, classification mechanisms, cooperative spectrum sensing techniques, ad-hoc network architecture, and protocol and simulation-based environments. Audience Researchers, industry IT engineers, and graduate students working on and implementing AI-based wireless sensor networks, 5G, IoT, deep learning, reinforcement learning, and robotics in WSN, and related technologies.
Publisher: John Wiley & Sons
ISBN: 1119821789
Category : Computers
Languages : en
Pages : 388
Book Description
ARTIFICIAL INTELLIGENT TECHNIQUES FOR WIRELESS COMMUNICATION AND NETWORKING The 20 chapters address AI principles and techniques used in wireless communication and networking and outline their benefit, function, and future role in the field. Wireless communication and networking based on AI concepts and techniques are explored in this book, specifically focusing on the current research in the field by highlighting empirical results along with theoretical concepts. The possibility of applying AI mechanisms towards security aspects in the communication domain is elaborated; also explored is the application side of integrated technologies that enhance AI-based innovations, insights, intelligent predictions, cost optimization, inventory management, identification processes, classification mechanisms, cooperative spectrum sensing techniques, ad-hoc network architecture, and protocol and simulation-based environments. Audience Researchers, industry IT engineers, and graduate students working on and implementing AI-based wireless sensor networks, 5G, IoT, deep learning, reinforcement learning, and robotics in WSN, and related technologies.
Introduction to Machine Learning and Natural Language Processing
Author: Dr.Ravi Kumar Saidala
Publisher: SK Research Group of Companies
ISBN: 9364926609
Category : Computers
Languages : en
Pages : 209
Book Description
Dr.Ravi Kumar Saidala, Associate Professor, Department of CSE – Data Science, CMR University, Bangalore, Karnataka, India. Mr.Satyanarayanareddy Marri, Assistant Professor, Department of Artificial Intelligence, Anurag University, Hyderabad, Telangana, India. Dr.D.Usha Rani, Associate Professor, Department of Computer Science and Applications, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India. Prof.U.Ananthanagu, Assistant Professor, Department of CSE, Alliance University, Bangalore, Karnataka, India.
Publisher: SK Research Group of Companies
ISBN: 9364926609
Category : Computers
Languages : en
Pages : 209
Book Description
Dr.Ravi Kumar Saidala, Associate Professor, Department of CSE – Data Science, CMR University, Bangalore, Karnataka, India. Mr.Satyanarayanareddy Marri, Assistant Professor, Department of Artificial Intelligence, Anurag University, Hyderabad, Telangana, India. Dr.D.Usha Rani, Associate Professor, Department of Computer Science and Applications, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India. Prof.U.Ananthanagu, Assistant Professor, Department of CSE, Alliance University, Bangalore, Karnataka, India.
Building Natural Language Generation Systems
Author: Ehud Reiter
Publisher: Cambridge University Press
ISBN: 0521620368
Category : Computers
Languages : en
Pages : 274
Book Description
This book explains how to build Natural Language Generation (NLG) systems - computer software systems which use techniques from artificial intelligence and computational linguistics to automatically generate understandable texts in English or other human languages, either in isolation or as part of multimedia documents, Web pages, and speech output systems. Typically starting from some non-linguistic representation of information as input, NLG systems use knowledge about language and the application domain to automatically produce documents, reports, explanations, help messages, and other kinds of texts. The book covers the algorithms and representations needed to perform the core tasks of document planning, microplanning, and surface realization, using a case study to show how these components fit together. It also discusses engineering issues such as system architecture, requirements analysis, and the integration of text generation into multimedia and speech output systems.
Publisher: Cambridge University Press
ISBN: 0521620368
Category : Computers
Languages : en
Pages : 274
Book Description
This book explains how to build Natural Language Generation (NLG) systems - computer software systems which use techniques from artificial intelligence and computational linguistics to automatically generate understandable texts in English or other human languages, either in isolation or as part of multimedia documents, Web pages, and speech output systems. Typically starting from some non-linguistic representation of information as input, NLG systems use knowledge about language and the application domain to automatically produce documents, reports, explanations, help messages, and other kinds of texts. The book covers the algorithms and representations needed to perform the core tasks of document planning, microplanning, and surface realization, using a case study to show how these components fit together. It also discusses engineering issues such as system architecture, requirements analysis, and the integration of text generation into multimedia and speech output systems.
Transformers for Natural Language Processing
Author: Denis Rothman
Publisher: Packt Publishing Ltd
ISBN: 1800568630
Category : Computers
Languages : en
Pages : 385
Book Description
Publisher's Note: A new edition of this book is out now that includes working with GPT-3 and comparing the results with other models. It includes even more use cases, such as casual language analysis and computer vision tasks, as well as an introduction to OpenAI's Codex. Key FeaturesBuild and implement state-of-the-art language models, such as the original Transformer, BERT, T5, and GPT-2, using concepts that outperform classical deep learning modelsGo through hands-on applications in Python using Google Colaboratory Notebooks with nothing to install on a local machineTest transformer models on advanced use casesBook Description The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers. The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face. The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets. What you will learnUse the latest pretrained transformer modelsGrasp the workings of the original Transformer, GPT-2, BERT, T5, and other transformer modelsCreate language understanding Python programs using concepts that outperform classical deep learning modelsUse a variety of NLP platforms, including Hugging Face, Trax, and AllenNLPApply Python, TensorFlow, and Keras programs to sentiment analysis, text summarization, speech recognition, machine translations, and moreMeasure the productivity of key transformers to define their scope, potential, and limits in productionWho this book is for Since the book does not teach basic programming, you must be familiar with neural networks, Python, PyTorch, and TensorFlow in order to learn their implementation with Transformers. Readers who can benefit the most from this book include experienced deep learning & NLP practitioners and data analysts & data scientists who want to process the increasing amounts of language-driven data.
Publisher: Packt Publishing Ltd
ISBN: 1800568630
Category : Computers
Languages : en
Pages : 385
Book Description
Publisher's Note: A new edition of this book is out now that includes working with GPT-3 and comparing the results with other models. It includes even more use cases, such as casual language analysis and computer vision tasks, as well as an introduction to OpenAI's Codex. Key FeaturesBuild and implement state-of-the-art language models, such as the original Transformer, BERT, T5, and GPT-2, using concepts that outperform classical deep learning modelsGo through hands-on applications in Python using Google Colaboratory Notebooks with nothing to install on a local machineTest transformer models on advanced use casesBook Description The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers. The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face. The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets. What you will learnUse the latest pretrained transformer modelsGrasp the workings of the original Transformer, GPT-2, BERT, T5, and other transformer modelsCreate language understanding Python programs using concepts that outperform classical deep learning modelsUse a variety of NLP platforms, including Hugging Face, Trax, and AllenNLPApply Python, TensorFlow, and Keras programs to sentiment analysis, text summarization, speech recognition, machine translations, and moreMeasure the productivity of key transformers to define their scope, potential, and limits in productionWho this book is for Since the book does not teach basic programming, you must be familiar with neural networks, Python, PyTorch, and TensorFlow in order to learn their implementation with Transformers. Readers who can benefit the most from this book include experienced deep learning & NLP practitioners and data analysts & data scientists who want to process the increasing amounts of language-driven data.
Natural Language Generation Systems
Author: David D. McDonald
Publisher: Springer Science & Business Media
ISBN: 1461238463
Category : Language Arts & Disciplines
Languages : en
Pages : 401
Book Description
Natural language generation is a field within artificial intelligence which looks ahead to the future when machines will communicate complex thoughts to their human users in a natural way. Generation systems supply the sophisticated knowledge about natural languages that must come into play when one needs to use wordings that will overpower techniques based only on symbolic string manipulation techniques. Topics covered in this volume include discourse theory, mechanical translation, deliberate writing, and revision. Natural Language Generation Systems contains contributions by leading researchers in the field. Chapters contain details of grammatical treatments and processing seldom reported on outside of full length monographs.
Publisher: Springer Science & Business Media
ISBN: 1461238463
Category : Language Arts & Disciplines
Languages : en
Pages : 401
Book Description
Natural language generation is a field within artificial intelligence which looks ahead to the future when machines will communicate complex thoughts to their human users in a natural way. Generation systems supply the sophisticated knowledge about natural languages that must come into play when one needs to use wordings that will overpower techniques based only on symbolic string manipulation techniques. Topics covered in this volume include discourse theory, mechanical translation, deliberate writing, and revision. Natural Language Generation Systems contains contributions by leading researchers in the field. Chapters contain details of grammatical treatments and processing seldom reported on outside of full length monographs.
Natural Language Processing Fundamentals
Author: Sohom Ghosh
Publisher: Packt Publishing Ltd
ISBN: 178995598X
Category : Computers
Languages : en
Pages : 374
Book Description
Use Python and NLTK (Natural Language Toolkit) to build out your own text classifiers and solve common NLP problems. Key FeaturesAssimilate key NLP concepts and terminologies Explore popular NLP tools and techniquesGain practical experience using NLP in application codeBook Description If NLP hasn't been your forte, Natural Language Processing Fundamentals will make sure you set off to a steady start. This comprehensive guide will show you how to effectively use Python libraries and NLP concepts to solve various problems. You'll be introduced to natural language processing and its applications through examples and exercises. This will be followed by an introduction to the initial stages of solving a problem, which includes problem definition, getting text data, and preparing it for modeling. With exposure to concepts like advanced natural language processing algorithms and visualization techniques, you'll learn how to create applications that can extract information from unstructured data and present it as impactful visuals. Although you will continue to learn NLP-based techniques, the focus will gradually shift to developing useful applications. In these sections, you'll understand how to apply NLP techniques to answer questions as can be used in chatbots. By the end of this book, you'll be able to accomplish a varied range of assignments ranging from identifying the most suitable type of NLP task for solving a problem to using a tool like spacy or gensim for performing sentiment analysis. The book will easily equip you with the knowledge you need to build applications that interpret human language. What you will learnObtain, verify, and clean data before transforming it into a correct format for usePerform data analysis and machine learning tasks using PythonUnderstand the basics of computational linguisticsBuild models for general natural language processing tasksEvaluate the performance of a model with the right metricsVisualize, quantify, and perform exploratory analysis from any text dataWho this book is for Natural Language Processing Fundamentals is designed for novice and mid-level data scientists and machine learning developers who want to gather and analyze text data to build an NLP-powered product. It'll help you to have prior experience of coding in Python using data types, writing functions, and importing libraries. Some experience with linguistics and probability is useful but not necessary.
Publisher: Packt Publishing Ltd
ISBN: 178995598X
Category : Computers
Languages : en
Pages : 374
Book Description
Use Python and NLTK (Natural Language Toolkit) to build out your own text classifiers and solve common NLP problems. Key FeaturesAssimilate key NLP concepts and terminologies Explore popular NLP tools and techniquesGain practical experience using NLP in application codeBook Description If NLP hasn't been your forte, Natural Language Processing Fundamentals will make sure you set off to a steady start. This comprehensive guide will show you how to effectively use Python libraries and NLP concepts to solve various problems. You'll be introduced to natural language processing and its applications through examples and exercises. This will be followed by an introduction to the initial stages of solving a problem, which includes problem definition, getting text data, and preparing it for modeling. With exposure to concepts like advanced natural language processing algorithms and visualization techniques, you'll learn how to create applications that can extract information from unstructured data and present it as impactful visuals. Although you will continue to learn NLP-based techniques, the focus will gradually shift to developing useful applications. In these sections, you'll understand how to apply NLP techniques to answer questions as can be used in chatbots. By the end of this book, you'll be able to accomplish a varied range of assignments ranging from identifying the most suitable type of NLP task for solving a problem to using a tool like spacy or gensim for performing sentiment analysis. The book will easily equip you with the knowledge you need to build applications that interpret human language. What you will learnObtain, verify, and clean data before transforming it into a correct format for usePerform data analysis and machine learning tasks using PythonUnderstand the basics of computational linguisticsBuild models for general natural language processing tasksEvaluate the performance of a model with the right metricsVisualize, quantify, and perform exploratory analysis from any text dataWho this book is for Natural Language Processing Fundamentals is designed for novice and mid-level data scientists and machine learning developers who want to gather and analyze text data to build an NLP-powered product. It'll help you to have prior experience of coding in Python using data types, writing functions, and importing libraries. Some experience with linguistics and probability is useful but not necessary.
Natural Language Processing with Python
Author: Steven Bird
Publisher: "O'Reilly Media, Inc."
ISBN: 0596555717
Category : Computers
Languages : en
Pages : 506
Book Description
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Publisher: "O'Reilly Media, Inc."
ISBN: 0596555717
Category : Computers
Languages : en
Pages : 506
Book Description
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Exploring GPT-3
Author: Steve Tingiris
Publisher: Packt Publishing Ltd
ISBN: 1800565496
Category : Computers
Languages : en
Pages : 296
Book Description
Get started with GPT-3 and the OpenAI API for natural language processing using JavaScript and Python Key FeaturesUnderstand the power of potential GPT-3 language models and the risks involvedExplore core GPT-3 use cases such as text generation, classification, and semantic search using engaging examplesPlan and prepare a GPT-3 application for the OpenAI review process required for publishing a live applicationBook Description Generative Pre-trained Transformer 3 (GPT-3) is a highly advanced language model from OpenAI that can generate written text that is virtually indistinguishable from text written by humans. Whether you have a technical or non-technical background, this book will help you understand and start working with GPT-3 and the OpenAI API. If you want to get hands-on with leveraging artificial intelligence for natural language processing (NLP) tasks, this easy-to-follow book will help you get started. Beginning with a high-level introduction to NLP and GPT-3, the book takes you through practical examples that show how to leverage the OpenAI API and GPT-3 for text generation, classification, and semantic search. You'll explore the capabilities of the OpenAI API and GPT-3 and find out which NLP use cases GPT-3 is best suited for. You'll also learn how to use the API and optimize requests for the best possible results. With examples focusing on the OpenAI Playground and easy-to-follow JavaScript and Python code samples, the book illustrates the possible applications of GPT-3 in production. By the end of this book, you'll understand the best use cases for GPT-3 and how to integrate the OpenAI API in your applications for a wide array of NLP tasks. What you will learnUnderstand what GPT-3 is and how it can be used for various NLP tasksGet a high-level introduction to GPT-3 and the OpenAI APIImplement JavaScript and Python code examples that call the OpenAI APIStructure GPT-3 prompts and options to get the best possible resultsSelect the right GPT-3 engine or model to optimize for speed and cost-efficiencyFind out which use cases would not be suitable for GPT-3Create a GPT-3-powered knowledge base application that follows OpenAI guidelinesWho this book is for Exploring GPT-3 is for anyone interested in natural language processing or learning GPT-3 with or without a technical background. Developers, product managers, entrepreneurs, and hobbyists looking to get to grips with NLP, AI, and GPT-3 will find this book useful. Basic computer skills are all you need to get the most out of this book.
Publisher: Packt Publishing Ltd
ISBN: 1800565496
Category : Computers
Languages : en
Pages : 296
Book Description
Get started with GPT-3 and the OpenAI API for natural language processing using JavaScript and Python Key FeaturesUnderstand the power of potential GPT-3 language models and the risks involvedExplore core GPT-3 use cases such as text generation, classification, and semantic search using engaging examplesPlan and prepare a GPT-3 application for the OpenAI review process required for publishing a live applicationBook Description Generative Pre-trained Transformer 3 (GPT-3) is a highly advanced language model from OpenAI that can generate written text that is virtually indistinguishable from text written by humans. Whether you have a technical or non-technical background, this book will help you understand and start working with GPT-3 and the OpenAI API. If you want to get hands-on with leveraging artificial intelligence for natural language processing (NLP) tasks, this easy-to-follow book will help you get started. Beginning with a high-level introduction to NLP and GPT-3, the book takes you through practical examples that show how to leverage the OpenAI API and GPT-3 for text generation, classification, and semantic search. You'll explore the capabilities of the OpenAI API and GPT-3 and find out which NLP use cases GPT-3 is best suited for. You'll also learn how to use the API and optimize requests for the best possible results. With examples focusing on the OpenAI Playground and easy-to-follow JavaScript and Python code samples, the book illustrates the possible applications of GPT-3 in production. By the end of this book, you'll understand the best use cases for GPT-3 and how to integrate the OpenAI API in your applications for a wide array of NLP tasks. What you will learnUnderstand what GPT-3 is and how it can be used for various NLP tasksGet a high-level introduction to GPT-3 and the OpenAI APIImplement JavaScript and Python code examples that call the OpenAI APIStructure GPT-3 prompts and options to get the best possible resultsSelect the right GPT-3 engine or model to optimize for speed and cost-efficiencyFind out which use cases would not be suitable for GPT-3Create a GPT-3-powered knowledge base application that follows OpenAI guidelinesWho this book is for Exploring GPT-3 is for anyone interested in natural language processing or learning GPT-3 with or without a technical background. Developers, product managers, entrepreneurs, and hobbyists looking to get to grips with NLP, AI, and GPT-3 will find this book useful. Basic computer skills are all you need to get the most out of this book.