Overview of Heavy Ion Fusion Accelerator Research in the U.S.

Overview of Heavy Ion Fusion Accelerator Research in the U.S. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 16

Get Book Here

Book Description
This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory; the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.

Overview of US Heavy Ion Fusion Research

Overview of US Heavy Ion Fusion Research PDF Author: R. C. Davidson
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy.

Overview of US Heavy Ion Fusion Research

Overview of US Heavy Ion Fusion Research PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy.

Overview of U.S. Heavy Ion Fusion Progress and Plans

Overview of U.S. Heavy Ion Fusion Progress and Plans PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy.

Report of the Heavy-ion Fusion Task Group

Report of the Heavy-ion Fusion Task Group PDF Author:
Publisher:
ISBN:
Category : Heavy ion accelerators
Languages : en
Pages : 36

Get Book Here

Book Description
An assessment of heavy-ion fusion has been completed. Energetic heavy ions, for example 10-GeV uranium, provided by an rf linac or an induction linac, are used as alternatives to laser light to drive inertial confinement fusion pellets. The assessment has covered accelerator technology, transport of heavy-ion beams, target interaction physics, civilian power issues, and military applications. It is concluded that particle accelerators promise to be efficient pellet drivers, but that there are formidable technical problems to be solved. It is recommended that a moderate level research program on heavy-ion fusion be pursued and that LASL should continue to work on critical issues in accelerator development, beam transport, reactor systems studies, and target physics over the next few years.

Heavy Ion Fusion Accelerator Research in the US.

Heavy Ion Fusion Accelerator Research in the US. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Three new development have taken place in the HIFAR program. First, a decision has been made to concentrate the experimental program on the development of multiple-beam induction linacs. Second, new beam transport experiments over a large number of quadrupole elements show that stable beam propagation occurs for significantly higher beam currents than had been believed possible a few years ago. Third, design calculations now show that a test accelerator of modest size and cost can come within a factor of three of testing almost all of the physics and technical issues appropriate to a power-plant driver.

Summary of Progress in U.S. Heavy Ion Fusion Science Research

Summary of Progress in U.S. Heavy Ion Fusion Science Research PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description


Heavy Ion Fusion Accelerator Research at the Lawrence Berkeley Laboratory

Heavy Ion Fusion Accelerator Research at the Lawrence Berkeley Laboratory PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
Since 1993, US research toward a heavy ion inertial fusion driver has concentrated on the multiple-beam ion-induction linac. This type of accelerator is unique in its ability to continuously amplify both the beam current and energy during the acceleration process. In a conceptual driver, many beams are accelerated in parallel through common induction cores in a linac that is 5--10 km long to final energies near 10 GeV in less than 0.2 msec. Past experiments at LBL have investigated the transport of intense ion beams in alternating gradient focusing structures and the acceleration of multiple ion becomes with current amplification in an induction linac. At present our major project is the development of a pulsed, 2-MV injector that produces beams at full driver size and intensity. In addition, a major activity is the development of a physics and engineering design for a larger Induction Linac Systems Experiments (ILSE) to test in a scaled way almost all the manipulations needed in a full-scale driver. We hope to begin construction of this experiment near the beginning of 1995.

Heavy Ion Fusion Accelerator Research (HIFAR) Half-year Report, October 1, 1988--March 31, 1989

Heavy Ion Fusion Accelerator Research (HIFAR) Half-year Report, October 1, 1988--March 31, 1989 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 46

Get Book Here

Book Description
The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; and final bunching, transport, and accurate focusing on a small target.

Heavy-Ion Fusion Accelerator Research, 1992

Heavy-Ion Fusion Accelerator Research, 1992 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 16

Get Book Here

Book Description
The National Energy Strategy calls for a demonstration IFE power plant by the year 2025. The cornerstone of the plan to meet this ambitious goal is research and development for heavy-ion driver technology. A series of successes indicates that the technology being studied by the HIFAR Group -- the induction accelerator -- is a prime candidate for further technology development toward this long-range goal. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions; the understanding of the scaling laws that apply in this hitherto little-explored physics regime; and the validation of new, potentially more economical accelerator strategies. Key specific elements to be addressed include: fundamental physical limits of transverse and longitudinal beam quality; development of induction modules for accelerators, along with multiple-beam hardware, at reasonable cost; acceleration of multiple beams, merging of the beams, and amplification of current without significant dilution of beam quality; final bunching, transport, and focusing onto a small target. In 1992, the HIFAR Program was concerned principally with the next step toward a driver: the design of ILSE, the Induction Linac Systems Experiments. ILSE will address most of the remaining beam-control and beam-manipulation issues at partial driver scale. A few parameters -- most importantly, the line charge density and consequently the size of the ILSE beams -- will be at full driver scale. A theory group closely integrated with the experimental groups continues supporting present-day work and looking ahead toward larger experiments and the eventual driver. Highlights of this long-range, driver-oriented research included continued investigations of longitudinal instability and some new insights into scaled experiments with which the authors might examine hard-to-calculate beam-dynamics phenomena.