Author: D.D Bainov
Publisher: CRC Press
ISBN: 9780750301428
Category : Mathematics
Languages : en
Pages : 296
Book Description
With neutral differential equations, any lack of smoothness in initial conditions is not damped and so they have proven to be difficult to solve. Until now, there has been little information to help with this problem. Oscillation Theory for Neutral Differential Equations with Delay fills a vacuum in qualitative theory of functional differential equations of neutral type. With much of the presented material previously unavailable outside Eastern Europe, this authoritative book provides a stimulus to research the oscillatory and asymptotic properties of these equations. It examines equations of first, second, and higher orders as well as the asymptotic behavior for tending toward infinity. These results are then generalized for partial differential equations of neutral type. The book also describes the historical development of the field and discusses applications in mathematical models of processes and phenomena in physics, electrical control and engineering, physical chemistry, and mathematical biology. This book is an important tool not only for mathematicians, but also for specialists in many fields including physicists, engineers, and biologists. It may be used as a graduate-level textbook or as a reference book for a wide range of subjects, from radiophysics to electrical and control engineering to biological science.
Oscillation Theory for Neutral Differential Equations with Delay
Author: D.D Bainov
Publisher: CRC Press
ISBN: 9780750301428
Category : Mathematics
Languages : en
Pages : 296
Book Description
With neutral differential equations, any lack of smoothness in initial conditions is not damped and so they have proven to be difficult to solve. Until now, there has been little information to help with this problem. Oscillation Theory for Neutral Differential Equations with Delay fills a vacuum in qualitative theory of functional differential equations of neutral type. With much of the presented material previously unavailable outside Eastern Europe, this authoritative book provides a stimulus to research the oscillatory and asymptotic properties of these equations. It examines equations of first, second, and higher orders as well as the asymptotic behavior for tending toward infinity. These results are then generalized for partial differential equations of neutral type. The book also describes the historical development of the field and discusses applications in mathematical models of processes and phenomena in physics, electrical control and engineering, physical chemistry, and mathematical biology. This book is an important tool not only for mathematicians, but also for specialists in many fields including physicists, engineers, and biologists. It may be used as a graduate-level textbook or as a reference book for a wide range of subjects, from radiophysics to electrical and control engineering to biological science.
Publisher: CRC Press
ISBN: 9780750301428
Category : Mathematics
Languages : en
Pages : 296
Book Description
With neutral differential equations, any lack of smoothness in initial conditions is not damped and so they have proven to be difficult to solve. Until now, there has been little information to help with this problem. Oscillation Theory for Neutral Differential Equations with Delay fills a vacuum in qualitative theory of functional differential equations of neutral type. With much of the presented material previously unavailable outside Eastern Europe, this authoritative book provides a stimulus to research the oscillatory and asymptotic properties of these equations. It examines equations of first, second, and higher orders as well as the asymptotic behavior for tending toward infinity. These results are then generalized for partial differential equations of neutral type. The book also describes the historical development of the field and discusses applications in mathematical models of processes and phenomena in physics, electrical control and engineering, physical chemistry, and mathematical biology. This book is an important tool not only for mathematicians, but also for specialists in many fields including physicists, engineers, and biologists. It may be used as a graduate-level textbook or as a reference book for a wide range of subjects, from radiophysics to electrical and control engineering to biological science.
Oscillation and Dynamics in Delay Equations
Author: John R. Graef
Publisher: American Mathematical Soc.
ISBN: 0821851403
Category : Mathematics
Languages : en
Pages : 274
Book Description
Oscillation theory and dynamical systems have long been rich and active areas of research. Containing frontier contributions by some of the leaders in the field, this book brings together papers based on presentations at the AMS meeting in San Francisco in January 1991. With special emphasis on delay equations, the papers cover a broad range of topics in ordinary, partial, and difference equations and include applications to problems in commodity prices, biological modelling, and number theory. The book would be of interest to graduate students and researchers in mathematics or those in other fields who have an interest in delay equations and their applications.
Publisher: American Mathematical Soc.
ISBN: 0821851403
Category : Mathematics
Languages : en
Pages : 274
Book Description
Oscillation theory and dynamical systems have long been rich and active areas of research. Containing frontier contributions by some of the leaders in the field, this book brings together papers based on presentations at the AMS meeting in San Francisco in January 1991. With special emphasis on delay equations, the papers cover a broad range of topics in ordinary, partial, and difference equations and include applications to problems in commodity prices, biological modelling, and number theory. The book would be of interest to graduate students and researchers in mathematics or those in other fields who have an interest in delay equations and their applications.
Theory of Functional Differential Equations
Author: Jack K. Hale
Publisher: Springer Science & Business Media
ISBN: 146129892X
Category : Mathematics
Languages : en
Pages : 374
Book Description
Since the publication of my lecture notes, Functional Differential Equations in the Applied Mathematical Sciences series, many new developments have occurred. As a consequence, it was decided not to make a few corrections and additions for a second edition of those notes, but to present a more compre hensive theory. The present work attempts to consolidate those elements of the theory which have stabilized and also to include recent directions of research. The following chapters were not discussed in my original notes. Chapter 1 is an elementary presentation of linear differential difference equations with constant coefficients of retarded and neutral type. Chapter 4 develops the recent theory of dissipative systems. Chapter 9 is a new chapter on perturbed systems. Chapter 11 is a new presentation incorporating recent results on the existence of periodic solutions of autonomous equations. Chapter 12 is devoted entirely to neutral equations. Chapter 13 gives an introduction to the global and generic theory. There is also an appendix on the location of the zeros of characteristic polynomials. The remainder of the material has been completely revised and updated with the most significant changes occurring in Chapter 3 on the properties of solutions, Chapter 5 on stability, and Chapter lOon behavior near a periodic orbit.
Publisher: Springer Science & Business Media
ISBN: 146129892X
Category : Mathematics
Languages : en
Pages : 374
Book Description
Since the publication of my lecture notes, Functional Differential Equations in the Applied Mathematical Sciences series, many new developments have occurred. As a consequence, it was decided not to make a few corrections and additions for a second edition of those notes, but to present a more compre hensive theory. The present work attempts to consolidate those elements of the theory which have stabilized and also to include recent directions of research. The following chapters were not discussed in my original notes. Chapter 1 is an elementary presentation of linear differential difference equations with constant coefficients of retarded and neutral type. Chapter 4 develops the recent theory of dissipative systems. Chapter 9 is a new chapter on perturbed systems. Chapter 11 is a new presentation incorporating recent results on the existence of periodic solutions of autonomous equations. Chapter 12 is devoted entirely to neutral equations. Chapter 13 gives an introduction to the global and generic theory. There is also an appendix on the location of the zeros of characteristic polynomials. The remainder of the material has been completely revised and updated with the most significant changes occurring in Chapter 3 on the properties of solutions, Chapter 5 on stability, and Chapter lOon behavior near a periodic orbit.
Inequalities And Applications
Author: Ravi P Agarwal
Publisher: World Scientific
ISBN: 9814501859
Category : Mathematics
Languages : en
Pages : 606
Book Description
World Scientific Series in Applicable Analysis (WSSIAA) reports new developments of a high mathematical standard and of current interest. Each volume in the series is devoted to mathematical analysis that has been applied, or is potentially applicable to the solution of scientific, engineering, and social problems. The third volume of WSSIAA contains 47 research articles on inequalities by leading mathematicians from all over the world and a tribute by R.M. Redheffer to Wolfgang Walter — to whom this volume is dedicated — on his 66th birthday.Contributors: A Acker, J D Aczél, A Alvino, K A Ames, Y Avishai, C Bandle, B M Brown, R C Brown, D Brydak, P S Bullen, K Deimling, J Diaz, Á Elbert, P W Eloe, L H Erbe, H Esser, M Essén, W D Evans, W N Everitt, V Ferone, A M Fink, R Ger, R Girgensohn, P Goetgheluck, W Haussmann, S Heikkilä, J Henderson, G Herzog, D B Hinton, T Horiuchi, S Hu, B Kawohl, V G Kirby; N Kirchhoff, G H Knightly, H W Knobloch, Q Kong, H König, A Kufner, M K Kwong, A Laforgia, V Lakshmikantham, S Leela, R Lemmert, E R Love, G Lüttgens, S Malek, R Manásevich, J Mawhin, R Medina, M Migda, R J Nessel, Z Páles, N S Papageorgiou, L E Payne, J Pe…ariƒ, L E Persson, A Peterson, M Pinto, M Plum, J Popenda, G Porru, R M Redheffer, A A Sagle, S Saitoh, D Sather, K Schmitt, D F Shea, A Simon, S Sivasundaram, R Sperb, C S Stanton, G Talenti, G Trombetti, S Varošanec, A S Vatsala, P Volkmann, H Wang, V Weckesser, F Zanolin, K Zeller, A Zettl.
Publisher: World Scientific
ISBN: 9814501859
Category : Mathematics
Languages : en
Pages : 606
Book Description
World Scientific Series in Applicable Analysis (WSSIAA) reports new developments of a high mathematical standard and of current interest. Each volume in the series is devoted to mathematical analysis that has been applied, or is potentially applicable to the solution of scientific, engineering, and social problems. The third volume of WSSIAA contains 47 research articles on inequalities by leading mathematicians from all over the world and a tribute by R.M. Redheffer to Wolfgang Walter — to whom this volume is dedicated — on his 66th birthday.Contributors: A Acker, J D Aczél, A Alvino, K A Ames, Y Avishai, C Bandle, B M Brown, R C Brown, D Brydak, P S Bullen, K Deimling, J Diaz, Á Elbert, P W Eloe, L H Erbe, H Esser, M Essén, W D Evans, W N Everitt, V Ferone, A M Fink, R Ger, R Girgensohn, P Goetgheluck, W Haussmann, S Heikkilä, J Henderson, G Herzog, D B Hinton, T Horiuchi, S Hu, B Kawohl, V G Kirby; N Kirchhoff, G H Knightly, H W Knobloch, Q Kong, H König, A Kufner, M K Kwong, A Laforgia, V Lakshmikantham, S Leela, R Lemmert, E R Love, G Lüttgens, S Malek, R Manásevich, J Mawhin, R Medina, M Migda, R J Nessel, Z Páles, N S Papageorgiou, L E Payne, J Pe…ariƒ, L E Persson, A Peterson, M Pinto, M Plum, J Popenda, G Porru, R M Redheffer, A A Sagle, S Saitoh, D Sather, K Schmitt, D F Shea, A Simon, S Sivasundaram, R Sperb, C S Stanton, G Talenti, G Trombetti, S Varošanec, A S Vatsala, P Volkmann, H Wang, V Weckesser, F Zanolin, K Zeller, A Zettl.
Stability and Oscillations in Delay Differential Equations of Population Dynamics
Author: K. Gopalsamy
Publisher: Springer Science & Business Media
ISBN: 9780792315940
Category : Mathematics
Languages : en
Pages : 526
Book Description
This monograph provides a definitive overview of recent advances in the stability and oscillation of autonomous delay differential equations. Topics include linear and nonlinear delay and integrodifferential equations, which have potential applications to both biological and physical dynamic processes. Chapter 1 deals with an analysis of the dynamical characteristics of the delay logistic equation, and a number of techniques and results relating to stability, oscillation and comparison of scalar delay and integrodifferential equations are presented. Chapter 2 provides a tutorial-style introduction to the study of delay-induced Hopf bifurcation to periodicity and the related computations for the analysis of the stability of bifurcating periodic solutions. Chapter 3 is devoted to local analyses of nonlinear model systems and discusses many methods applicable to linear equations and their perturbations. Chapter 4 considers global convergence to equilibrium states of nonlinear systems, and includes oscillations of nonlinear systems about their equilibria. Qualitative analyses of both competitive and cooperative systems with time delays feature in both Chapters 3 and 4. Finally, Chapter 5 deals with recent developments in models of neutral differential equations and their applications to population dynamics. Each chapter concludes with a number of exercises and the overall exposition recommends this volume as a good supplementary text for graduate courses. For mathematicians whose work involves functional differential equations, and whose interest extends beyond the boundaries of linear stability analysis.
Publisher: Springer Science & Business Media
ISBN: 9780792315940
Category : Mathematics
Languages : en
Pages : 526
Book Description
This monograph provides a definitive overview of recent advances in the stability and oscillation of autonomous delay differential equations. Topics include linear and nonlinear delay and integrodifferential equations, which have potential applications to both biological and physical dynamic processes. Chapter 1 deals with an analysis of the dynamical characteristics of the delay logistic equation, and a number of techniques and results relating to stability, oscillation and comparison of scalar delay and integrodifferential equations are presented. Chapter 2 provides a tutorial-style introduction to the study of delay-induced Hopf bifurcation to periodicity and the related computations for the analysis of the stability of bifurcating periodic solutions. Chapter 3 is devoted to local analyses of nonlinear model systems and discusses many methods applicable to linear equations and their perturbations. Chapter 4 considers global convergence to equilibrium states of nonlinear systems, and includes oscillations of nonlinear systems about their equilibria. Qualitative analyses of both competitive and cooperative systems with time delays feature in both Chapters 3 and 4. Finally, Chapter 5 deals with recent developments in models of neutral differential equations and their applications to population dynamics. Each chapter concludes with a number of exercises and the overall exposition recommends this volume as a good supplementary text for graduate courses. For mathematicians whose work involves functional differential equations, and whose interest extends beyond the boundaries of linear stability analysis.
Oscillation Theory for Difference and Functional Differential Equations
Author: R.P. Agarwal
Publisher: Springer Science & Business Media
ISBN: 9401594015
Category : Mathematics
Languages : en
Pages : 344
Book Description
This monograph is devoted to a rapidly developing area of research of the qualitative theory of difference and functional differential equations. In fact, in the last 25 years Oscillation Theory of difference and functional differential equations has attracted many researchers. This has resulted in hundreds of research papers in every major mathematical journal, and several books. In the first chapter of this monograph, we address oscillation of solutions to difference equations of various types. Here we also offer several new fundamental concepts such as oscillation around a point, oscillation around a sequence, regular oscillation, periodic oscillation, point-wise oscillation of several orthogonal polynomials, global oscillation of sequences of real valued functions, oscillation in ordered sets, (!, R, ~)-oscillate, oscillation in linear spaces, oscillation in Archimedean spaces, and oscillation across a family. These concepts are explained through examples and supported by interesting results. In the second chapter we present recent results pertaining to the oscil lation of n-th order functional differential equations with deviating argu ments, and functional differential equations of neutral type. We mainly deal with integral criteria for oscillation. While several results of this chapter were originally formulated for more complicated and/or more general differ ential equations, we discuss here a simplified version to elucidate the main ideas of the oscillation theory of functional differential equations. Further, from a large number of theorems presented in this chapter we have selected the proofs of only those results which we thought would best illustrate the various strategies and ideas involved.
Publisher: Springer Science & Business Media
ISBN: 9401594015
Category : Mathematics
Languages : en
Pages : 344
Book Description
This monograph is devoted to a rapidly developing area of research of the qualitative theory of difference and functional differential equations. In fact, in the last 25 years Oscillation Theory of difference and functional differential equations has attracted many researchers. This has resulted in hundreds of research papers in every major mathematical journal, and several books. In the first chapter of this monograph, we address oscillation of solutions to difference equations of various types. Here we also offer several new fundamental concepts such as oscillation around a point, oscillation around a sequence, regular oscillation, periodic oscillation, point-wise oscillation of several orthogonal polynomials, global oscillation of sequences of real valued functions, oscillation in ordered sets, (!, R, ~)-oscillate, oscillation in linear spaces, oscillation in Archimedean spaces, and oscillation across a family. These concepts are explained through examples and supported by interesting results. In the second chapter we present recent results pertaining to the oscil lation of n-th order functional differential equations with deviating argu ments, and functional differential equations of neutral type. We mainly deal with integral criteria for oscillation. While several results of this chapter were originally formulated for more complicated and/or more general differ ential equations, we discuss here a simplified version to elucidate the main ideas of the oscillation theory of functional differential equations. Further, from a large number of theorems presented in this chapter we have selected the proofs of only those results which we thought would best illustrate the various strategies and ideas involved.
Oscillation, Nonoscillation, Stability and Asymptotic Properties for Second and Higher Order Functional Differential Equations
Author: Leonid Berezansky
Publisher: CRC Press
ISBN: 1000048632
Category : Mathematics
Languages : en
Pages : 605
Book Description
Asymptotic properties of solutions such as stability/ instability,oscillation/ nonoscillation, existence of solutions with specific asymptotics, maximum principles present a classical part in the theory of higher order functional differential equations. The use of these equations in applications is one of the main reasons for the developments in this field. The control in the mechanical processes leads to mathematical models with second order delay differential equations. Stability and stabilization of second order delay equations are one of the main goals of this book. The book is based on the authors’ results in the last decade. Features: Stability, oscillatory and asymptotic properties of solutions are studied in correlation with each other. The first systematic description of stability methods based on the Bohl-Perron theorem. Simple and explicit exponential stability tests. In this book, various types of functional differential equations are considered: second and higher orders delay differential equations with measurable coefficients and delays, integro-differential equations, neutral equations, and operator equations. Oscillation/nonoscillation, existence of unbounded solutions, instability, special asymptotic behavior, positivity, exponential stability and stabilization of functional differential equations are studied. New methods for the study of exponential stability are proposed. Noted among them inlcude the W-transform (right regularization), a priory estimation of solutions, maximum principles, differential and integral inequalities, matrix inequality method, and reduction to a system of equations. The book can be used by applied mathematicians and as a basis for a course on stability of functional differential equations for graduate students.
Publisher: CRC Press
ISBN: 1000048632
Category : Mathematics
Languages : en
Pages : 605
Book Description
Asymptotic properties of solutions such as stability/ instability,oscillation/ nonoscillation, existence of solutions with specific asymptotics, maximum principles present a classical part in the theory of higher order functional differential equations. The use of these equations in applications is one of the main reasons for the developments in this field. The control in the mechanical processes leads to mathematical models with second order delay differential equations. Stability and stabilization of second order delay equations are one of the main goals of this book. The book is based on the authors’ results in the last decade. Features: Stability, oscillatory and asymptotic properties of solutions are studied in correlation with each other. The first systematic description of stability methods based on the Bohl-Perron theorem. Simple and explicit exponential stability tests. In this book, various types of functional differential equations are considered: second and higher orders delay differential equations with measurable coefficients and delays, integro-differential equations, neutral equations, and operator equations. Oscillation/nonoscillation, existence of unbounded solutions, instability, special asymptotic behavior, positivity, exponential stability and stabilization of functional differential equations are studied. New methods for the study of exponential stability are proposed. Noted among them inlcude the W-transform (right regularization), a priory estimation of solutions, maximum principles, differential and integral inequalities, matrix inequality method, and reduction to a system of equations. The book can be used by applied mathematicians and as a basis for a course on stability of functional differential equations for graduate students.
Nonoscillation and Oscillation Theory for Functional Differential Equations
Author: Ravi P. Agarwal
Publisher: CRC Press
ISBN: 0203025741
Category : Mathematics
Languages : en
Pages : 400
Book Description
This book summarizes the qualitative theory of differential equations with or without delays, collecting recent oscillation studies important to applications and further developments in mathematics, physics, engineering, and biology. The authors address oscillatory and nonoscillatory properties of first-order delay and neutral delay differential eq
Publisher: CRC Press
ISBN: 0203025741
Category : Mathematics
Languages : en
Pages : 400
Book Description
This book summarizes the qualitative theory of differential equations with or without delays, collecting recent oscillation studies important to applications and further developments in mathematics, physics, engineering, and biology. The authors address oscillatory and nonoscillatory properties of first-order delay and neutral delay differential eq
Oscillation Theory for Functional Differential Equations
Author: Lynn Erbe
Publisher: Routledge
ISBN: 135142632X
Category : Mathematics
Languages : en
Pages : 504
Book Description
Examines developments in the oscillatory and nonoscillatory properties of solutions for functional differential equations, presenting basic oscillation theory as well as recent results. The book shows how to extend the techniques for boundary value problems of ordinary differential equations to those of functional differential equations.
Publisher: Routledge
ISBN: 135142632X
Category : Mathematics
Languages : en
Pages : 504
Book Description
Examines developments in the oscillatory and nonoscillatory properties of solutions for functional differential equations, presenting basic oscillation theory as well as recent results. The book shows how to extend the techniques for boundary value problems of ordinary differential equations to those of functional differential equations.
Applications of Networks, Sensors and Autonomous Systems Analytics
Author: Jyotsna Kumar Mandal
Publisher: Springer Nature
ISBN: 9811673055
Category : Technology & Engineering
Languages : en
Pages : 364
Book Description
This book presents high-quality research papers presented at International Conference on Applications of Networks, Sensors and Autonomous Systems Analytics (ICANSAA 2020), held during December, 11 – 12, 2020, at JIS College of Engineering, Kalyani, West Bengal, India. The major topics covered are cyber-physical systems and sensor networks, data analytics and autonomous systems and MEMS and NEMS with applications in biomedical devices. It includes novel and innovative work from experts, practitioners, scientists, and decision-makers from academia and industry.
Publisher: Springer Nature
ISBN: 9811673055
Category : Technology & Engineering
Languages : en
Pages : 364
Book Description
This book presents high-quality research papers presented at International Conference on Applications of Networks, Sensors and Autonomous Systems Analytics (ICANSAA 2020), held during December, 11 – 12, 2020, at JIS College of Engineering, Kalyani, West Bengal, India. The major topics covered are cyber-physical systems and sensor networks, data analytics and autonomous systems and MEMS and NEMS with applications in biomedical devices. It includes novel and innovative work from experts, practitioners, scientists, and decision-makers from academia and industry.